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Abstract
The OWL 2 QL profile of the OWL 2 Web Ontology Language, based on the family of de-

scription logics called DL-Lite, is designed so that data stored in a standard relational database
system (RDBMS) can be queried through an ontology via a rewriting mechanism, i.e., by rewriting
the query into an SQL query that is then answered by the RDBMS system, without any changes
to the data. In this paper we propose a language whose expressive power goes beyond that of
DL-Lite while still allowing query answering via rewriting of queries into unions of conjunctive
two-way regular path queries (UC2RPQs) instead of SQL queries. Our language is an extension
of both OWL 2 QL and linear ELH: OWL 2 QL is extended by allowing qualified existential
quantification on the left-hand side of concept inclusion axioms, and linear ELH by allowing in-
verses in role inclusion axioms. We identify a syntactic property of the extended language that
guarantees UC2RPQ-rewritability. We propose a novel rewriting technique for conjunctive queries
(CQs) under our ontology language that makes use of nondeterministic finite state automata. We
show that CQ answering in our setting is NLOGSPACE-complete with respect to data complex-
ity and NP-complete for combined complexity; we also show that answering instance queries is
NLOGSPACE-complete for data complexity and in PTIME for combined complexity.

1. Introduction

Ontologies have been successfully employed in the conceptual modelling of data in several areas,
particularly in Information Integration and the Semantic Web. An ontology is a specification of
the domain of interest of an application, and can be specified using logical rules which, on the one
hand, restrict the form of the underlying data, and on the other hand allow for inference of informa-
tion that is not explicitly contained in the data. Description Logic (DL) is a family of knowledge
representation formalisms that are able to capture a wide range of ontological constructs (Baader &
Nutt, 2007). DLs are based on concepts (unary predicates representing classes of individuals) and
roles (binary predicates representing relations between classes). A DL knowledge base consists of
a TBox (the terminological component) and an ABox (the assertional component). The former is a
conceptual representation of the schema, while the latter is an instance of the schema.
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A common assumption in this context is the so-called open-world assumption, namely that the
information in the ABox is sound but not complete; the TBox, in particular, specifies how the ABox
can be expanded with additional information in order to answer queries. Answers to a query in this
context are called certain answers, as they correspond to the answers that are true in all models of
the theory constituted by the knowledge base (Lenzerini, 2002). The set of all models is represented
by the so-called expansion (or chase (Calı̀, Lembo, & Rosati, 2003)) of an ABox A according to a
TBox T . Note that neither each model nor the set of all models is necessarily finite. The expansion
(chase) is illustrated in the following example.

Example 1. Consider the TBox T comprising the assertions Parent ⊑ Person and Person ⊑
∃has.Parent, where Person and Parent are concepts. The first assertion states that every individual
in the class Parent is also in the class Person. In the second assertion, the concept ∃has.Parent de-
notes the individuals connected via the role has to some individual belonging to the concept Parent;
in other words, it contains all x such that has(x,y) and Parent(y) for some y. Thus, the second
assertion states that every individual in the class Person is also in the class of individuals who have
a parent. Now suppose we have the ABox A = {Person(alice)}; we can expand A according to
the TBox T so as to add to it all atoms entailed by (T ,A); we therefore add has(alice,z0) and
Parent(z0), where z0 is a so-called labelled null, that is, a placeholder for an unknown value of
which we know the existence (note that, with this approach, A can be expanded further). Given the
query q defined as q(x)← has(x,y), the answer to q under (T ,A) is {alice} because has(alice,z0)
is entailed by (T ,A); in fact, the certain answers to q are obtained by evaluating q on the expan-
sion and by considering answers that do not contain nulls. If we consider the query q1 defined as
q1(x)← Parent(x), the answer is empty because z0, though known to exist, is not known.

Answers to queries over DL knowledge bases can be computed, for certain languages, by query
rewriting (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007). In query rewriting, a new
query q′ is computed (rewritten) from the given query q according to the TBox T , such that the
answers to q on K= (T ,A) are obtained by evaluating q′ onA, whereA is seen as a database; it is
said that q is rewritten into q′ and that q′ is the perfect rewriting of q with respect to T . The language
of q′, called the target language, can be more expressive than that of q. Query rewriting has been
extensively employed in query answering over ontologies (Gottlob, Orsi, & Pieris, 2011; Pérez-
Urbina, Horrocks, & Motik, 2009). A common rewriting technique for DLs and other knowledge
representation formalisms, inspired by resolution in Logic Programming, has as the target language
unions of conjunctive queries (Calı̀ et al., 2003).

Example 2. Let us consider again the knowledge base of Example 1. The perfect rewriting of
query q is the query q′ defined as q(x)← Person(x)∪has(x,y); intuitively, q′ captures the fact that,
to search for individuals which are connected via the role has to some other individual, we need
also to consider individuals in Person, because the TBox might infer the former from the latter. The
evaluation of q′ on A returns the correct (i.e., certain) answers.

The OWL 2 QL profile of the OWL 2 Web Ontology Language — which is based on the descrip-
tion logic DL-LiteR (Calvanese et al., 2007) — is expressly designed so that query answering can
be performed via query rewriting. Data (assertions) that are stored in a standard relational database
can be queried through an ontology by rewriting the query into an SQL query that is then answered
by the RDBMS, without any changes to the data (for example, such a rewriting was presented
in (Calvanese et al., 2007)).
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Extending the expressiveness of DL-LiteR may lead to the need for a more expressive target
language than SQL, i.e. than first-order (FO) queries. This occurs, for example, when qualified
existential quantification is allowed on the left-hand side (LHS) of axioms, i.e., formulae of the
form ∃R.D where R is a role and D a concept. In cases such as this, we say that the language is not
FO-rewritable. The following example illustrates this issue.

Example 3. Consider the TBox T = {∃hasParent.Person ⊑ Person} and the query q de-
fined as q(x) ← Person(x). Note that an expression of the form ∃hasParent.Person is forbid-
den on the left-hand sides of axioms in DL-LiteR. It is easy to see that the query rewrit-
ing technique described earlier produces an infinite union of conjunctive queries: q(x) ←
Person(x), q(x) ← hasParent(x,y),Person(y) and all conjunctive queries of the form q(x) ←
hasParent(x,y1), . . . ,hasParent(yk,yk+1),Person(yk+1), with k ⩾ 1. This cannot be captured by an
FO-rewriting (see Theorem 7.8 in (Baader, Horrocks, Lutz, & Sattler, 2017), for example).

However, by adopting the semantic web query language SPARQL 1.1 (Harris & Seaborne,
2013), database systems should be able to answer queries that are more expressive than FO queries
since the property paths of SPARQL 1.1 are able to express navigational queries by defining
regular expressions on predicates. In particular, every conjunctive two-way regular path query
(C2RPQ) (Calvanese, De Giacomo, Lenzerini, & Vardi, 2000), as well as unions of C2RPQs
(UC2RPQs), can be translated to a SPARQL 1.1 query. Building on this, in this paper we propose
a language that extends DL-LiteR but still allows query answering via a simple rewriting mecha-
nism, with UC2RPQs instead of SQL queries as the target language. We allow qualified existential
quantification on the left-hand sides of axioms and identify a property of the resulting language
that allows a rewriting into UC2RPQs. The description logic resulting from this extension, which
we call harmless linear ELHI, denoted by ELHIℓinh , is a generalisation of both DL-LiteR (Ar-
tale, Calvanese, Kontchakov, & Zakharyaschev, 2009) and linear ELH (which is called DL-Lite+

in (Pérez-Urbina, Motik, & Horrocks, 2010)).

Example 4. Recall the issue in the previous example, where a finite FO-rewriting was not feasible.
In order to capture the infinite FO-rewriting, we can produce a rewriting into a C2RPQ q′ defined
as q(x)← hasParent∗(x,y),Person(y), where hasParent∗ is a regular expression denoting all finite
compositions of hasParent with itself, i.e.,

hasParent∗(x,y) = hasParent(x,y)∪hasParent(x,z1), . . . ,hasParent(zi,y)

for all i⩾ 1.

Contributions. This paper significantly extends earlier work (Dimartino, Calı̀, Poulovassilis, &
Wood, 2016) where we first proposed exploiting the capabilities of navigational queries in order to
allow rewriting of conjunctive queries into CRPQs (not UC2RPQs) under a more restrictive DL,
namely linear ELH. We also give here a complete theoretical development and full proofs. In more
detail, the contributions are the following:

• We define ELHIℓinh (harmless linear ELHI), an ontology language that generalises both
DL-LiteR and linear ELH.

• We show that instance queries (queries with a single atom in their body) under ELHIℓinh
knowledge bases can be rewritten to 2RPQs (two-way regular path queries), using an algo-
rithm based on non-deterministic finite-state automata.
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• We show that conjunctive queries (CQs) under ELHIℓinh knowledge bases can be rewritten to
UC2RPQs. This algorithm combines the tree-witness rewriting of (Kikot, Kontchakov, & Za-
kharyaschev, 2012; Kontchakov & Zakharyaschev, 2014) with the above rewriting technique
for instance queries. Since UC2RPQs can be straightforwardly expressed in SPARQL 1.1 by
means of property paths, our approach is therefore directly applicable to real-world querying
settings.

• We undertake a complexity analysis for query answering under ELHIℓinh . We analyse the
computational cost of query answering in terms of both data complexity (where the TBox
and the query are fixed and the ABox alone is the input) and combined complexity (where
the query, TBox and ABox all constitute the input). We show that answering instance queries
under ELHIℓinh is NLOGSPACE-complete for data complexity and in PTIME for combined
complexity; we also show that answering CQs under ELHIℓinh is NLOGSPACE-complete for
data complexity and NP-complete for combined complexity.

• We formally prove the correctness of our algorithms, and also that they comply with the upper
complexity bounds.

2. Related Work

Query rewriting has been extensively employed in query answering over ontologies expressed in
a wide range of different DLs. In terms of the data complexity of conjunctive query evaluation,
the DLs range from so-called “expressive DLs” such as ALC and SHIQ, for which evaluation
is coNP-hard (Schaerf, 1993), to “Horn DLs” such as EL and OWL 2 EL, for which evaluation is
PTIME-hard, and the DL-Lite family and OWL 2 QL, for which evaluation is in AC0. The latter two
complexity measures correspond to query rewritability as follows: membership in AC0 is necessary
for FO-rewritability, while membership in PTIME is necessary for rewritability into Datalog.

Calvanese et al. (2007) introduced the DL-Lite family of DLs, with the motivation of defining
DLs for which both reasoning and query answering were tractable. The family includes DL-Litecore,
which provides concept inclusions, disjointness between concepts, role typing, participation con-
straints, and non-participation constraints, DL-LiteF , which adds functionality restrictions on roles
to the core, and DL-LiteR, which adds role inclusions and role disjointness assertions. They show
that the data complexity of answering unions of conjunctive queries expressed in these DLs is in
LOGSPACE, later improved to AC0 (a proper subclass of LOGSPACE).

In subsequent work, Calvanese, De Giacomo, Lembo, Lenzerini, and Rosati (2013) introduce
DLR-LiteA,⊓, which generalises DL-Litecore, DL-LiteF , DL-LiteR and DL-LiteA (a non-trivial fu-
sion of DL-LiteF and DL-LiteR), by allowing n-ary relations rather than only binary roles. They
show that DLR-LiteA,⊓ is FO-rewritable and therefore that query answering for DLR-LiteA,⊓ is in
AC0. In addition, they show that adding qualified existential quantification to the left-hand side
or right-hand side of concept inclusions makes query answering NLOGSPACE-hard, which implies
that conjunctive queries are no longer FO-rewritable. Allowing conjunction on the left-hand side of
concept inclusion as well makes query answering PTIME-complete (Calvanese et al., 2013).

Rosati (2007) investigates the data complexity of query answering for the EL family of descrip-
tion logics. He shows that answering unions of conjunctive queries is PTIME-complete for both EL
and ELH (which adds role inclusions to EL).

Building on previous work on DL-Lite+ in (Pérez-Urbina, Motik, & Horrocks, 2008), Pérez-
Urbina et al. (2010) present a resolution-based query rewriting algorithm for ELHIO¬. The DL

854



EFFICIENT ONTOLOGY-MEDIATED QUERY ANSWERING

ELHIO¬ is obtained from ELH by allowing inverse roles (I), concept assertions of the form {a}
for some constant a (O), and negative inclusions (¬). DL-Lite+ is a fragment of ELH in which
concepts involving conjunction are disallowed, also known as linear ELH (which we will denote
by ELHℓin from now on). Their algorithm rewrites a conjunctive query and an ELHIO¬ TBox T
into a Datalog program, also showing that conjunctive query answering for ELHIO¬ is PTIME-
complete in terms of data complexity. Furthermore, if T is in DL-Lite+, then the perfect rewriting
is a union of conjunctive queries and a linear Datalog query, as in (Pérez-Urbina et al., 2008), while
if T is in DL-LiteR, then the perfect rewriting is a union of conjunctive queries, as in (Calvanese
et al., 2007).

Pérez-Urbina et al. (2009) compare their resolution-based rewriting algorithm from (Pérez-
Urbina et al., 2010) with that of Calvanese et al. (2007), where the DL under consideration is
OWL 2 QL, which is based on DL-LiteR. The comparison is performed via an empirical evalua-
tion using ontologies and queries derived from realistic applications. The results indicate that the
resolution-based algorithm produces significantly smaller rewritings in most cases, an important
consideration in practical applications. Improving the performance of such systems has continued
to be an active area of research (Trivela, Stoilos, Chortaras, & Stamou, 2015).

Hansen, Lutz, Seylan, and Wolter (2014, 2015) propose an algorithm for computing FO-
rewritings of concept instance queries (when they exist) over ELHdr TBoxes, where ELHdr ex-
tends ELH with domain and range restrictions on roles and underlies the OWL 2 EL profile. The
algorithm outputs a succinct non-recursive Datalog program if the input (query and TBox) is FO-
rewritable and otherwise reports non-FO-rewritability. Experiments show that the algorithm is effi-
cient and widely applicable.

In other work, Bienvenu, Lutz, and Wolter (2013) and Bienvenu, Hansen, Lutz, and Wolter
(2016) study FO-rewriting in the presence of ontologies formulated in a description logic that lies
between EL and Horn-SHIF in expressiveness. The former paper considers only concept instance
(atomic) queries, as in (Hansen et al., 2015), whereas the latter extends both of these to conjunctive
queries. The latter paper characterises FO-rewritability in terms of the presence of certain (almost)
tree-shaped ABoxes.

Recently, Lutz and Sabellek (2022) completely characterised the data complexity of answering
conjunctive queries with respect to an EL ontology by providing a trichotomy into the classes AC0,
NLOGSPACE and PTIME. These classes correspond to rewritability into FO, linear Datalog and
Datalog, respectively.

The tree-witness technique that we use in Section 5 of this paper is derived from (Kikot et al.,
2012; Kontchakov & Zakharyaschev, 2014), which address query rewriting under the DLs under-
pinning the OWL 2 profiles, namely OWL 2 EL, QL and RL, and propose the tree-witness approach
to rewrite conjunctive queries under QL.

In terms of query languages more powerful than conjunctive queries, (Bienvenu, Ortiz, &
Simkus, 2015) have studied the complexity of answering C2RPQs under various DLs. In particular,
they show (among other results) that the data complexity of answering C2RPQs under DL-LiteR is
NLOGSPACE-complete, the same as answering C2RPQs without an ontology, while that for EL(H)
is PTIME-complete, the same as for conjunctive queries.

In this paper we build on the above work by proposing a language that is an extension of both
OWL 2 QL and ELHℓin. We propose a novel rewriting technique for CQs under our ontology lan-
guage that makes use of non-deterministic finite-state automata. We show that CQ answering in
our setting is NLOGSPACE-complete with respect to data complexity and NP-complete for com-
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bined complexity; we also show that answering instance queries is NLOGSPACE-complete for data
complexity and in PTIME for combined complexity.

3. Preliminaries

In this section we present the formal concepts that we will use in the rest of the paper: the ELHIℓin
description logic, regular languages, and conjunctive regular path queries.

3.1 The ELHIℓin Description Logic

The ELHIℓin description logic that is the focus of this paper is derived from the EL language (which
is the core of the OWL 2 EL profile), extended with the additional features of inverse roles (I) and
role inclusion axioms (H), but disallowing conjunction of concepts on the left-hand side of concept
inclusion axioms. It can also be seen as extending QL (Kontchakov & Zakharyaschev, 2014), a
slight simplification of the OWL 2 QL profile, and therefore DL-LiteR (Artale et al., 2009) to allow
qualified existential quantification on the left-hand side (LHS) of concept inclusion axioms.

The syntax of ELHIℓin is as follows. The alphabet contains three pairwise disjoint and count-
ably infinite sets of concept names A, role names R, and individual names I. The alphabet also
contains a set of roles P, such that each P ∈ P is either a role name R or its inverse, denoted by R−.
A complex concept C is constructed from a special primitive concept ⊤ (‘top’), concept names and
role names using the following production rules:

C ::= D | ∃P.C
D ::= A | ∃P.⊤

where A ∈ A and P ∈ P. The non-terminal D generates a subset of all complex concepts and is used
below. The sets of complex concepts generated by the non-terminals C and D are denoted by C
and D, respectively. The alphabet includes two additional sets of negated complex concepts E and
negated roles Q constructed using the following production rules:

E ::= D | ¬D
Q ::= P | ¬P
P ::= R | R−

In ELHIℓin, a TBox T is a finite set of concept and role inclusion axioms of the form

C ⊑ E and P⊑ Q

where C ∈ C, E ∈ E and P,Q ∈ P.
We observe that negation can only appear on the right-hand side (RHS) of an inclusion axiom.

Inclusion axioms in which there is no negation are called positive inclusions (PIs), while those in
which negation does appear are called negative inclusions (NIs).
ELHIℓin could be extended to allow qualified existential quantification on the RHS of concept

inclusion axioms. However, this can be simulated by making use of inclusions between roles as well
as unqualified existential quantification of concepts in inclusions between concepts. For example,
the axiom A ⊑ ∃R.B can be simulated by A ⊑ ∃R1.⊤, R1 ⊑ R and ∃R−1 .⊤ ⊑ B, where R1 is a new
role name. Therefore, in this paper, we do not explicitly consider qualified existential quantification
on the RHS of axioms.
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An ABox A is a finite set of concept and role assertions of the form A(a) and R(a,b), where
A ∈ A, R ∈ R and a,b ∈ I. Given an ABox A, we denote by ind(A) the set of individual names that
occur in A. Taken together, T and A comprise a knowledge base (or KB) K = (T ,A).

NIs in ELHIℓin represent integrity constraints which the KB is expected to satisfy. Results
in (Calı̀, Gottlob, & Lukasiewicz, 2012) show that the satisfiability of such constraints can be
checked by evaluating a set of Boolean CQs whose size is linear in the number of NIs. Further-
more, the NIs do not affect the answers to CQs on the KB, and so can be ignored during query
answering. Since NIs do not contribute to the query rewriting process and checking satisfiability
does not increase the complexity of CQ answering under ELHIℓin, we assume from now on that
TBoxes do not contain any NIs.

In this paper we adopt the semantics of DLs defined in terms of interpretations (Baader & Nutt,
2007). An interpretation I is a pair (∆I , ·I) that consists of a non-empty countable infinite domain
of interpretation ∆I and an interpretation function ·I which assigns (i) an element aI ∈ ∆I to each
individual name a ∈ I, (ii) a subset AI ⊆ ∆I to each concept name A ∈ A and (iii) a binary relation
RI ⊆ ∆I ×∆I to each role name R ∈ R. The interpretation function ·I is extended inductively to
complex concepts with the following definitions:

(R−)I = {(v,u) | (u,v) ∈ RI}
(∃P.⊤)I = {u | there is a v such that (u,v) ∈ PI}
(∃P.C)I = {u | there is a v ∈CI such that (u,v) ∈ PI}

The satisfaction relation |= for inclusions and assertions (where C ∈ C, D ∈ D and P,Q ∈ P) is
defined as follows:

I |=C ⊑ D if and only if CI ⊆ DI ,
I |= P⊑ Q if and only if PI ⊆ QI ,
I |=C(a) if and only if aI ∈CI ,
I |= P(a,b) if and only if (aI ,bI) ∈ PI .

An interpretation I is a model of a knowledge base K = (T ,A), written I |=K, if it satisfies all
concept and role inclusions of T and all concept and role assertions of A. A knowledge base is
satisfiable if admits at least one model.

We also need to define the notion of entailment of inclusions and assertions from a knowledge
base. A knowledge base K = (T ,A) entails a concept inclusion C ⊑ E, written K |= C ⊑ E, if
I |= C ⊑ E for each model I of K. Analogous definitions apply for entailment of role inclusions,
concept assertions and role assertions.

Now, we first convert ELHIℓin TBoxes to a normal form, extending (Baader, Brandt, & Lutz,
2005) to include inverse roles. We do this so as to reduce the complexity of the axiom syntax that
we need to consider in developing our methods and proofs.

Definition 1. An ELHIℓin TBox is said to be in normal form if each of its concept inclusions is of
one of the following four forms:

A1 ⊑ A2, ∃R.⊤⊑ A, ∃R.A1 ⊑ A2, A⊑ ∃R.⊤,

and each of its role inclusions is of one of the following two forms:

R1 ⊑ R2, R1 ⊑ R−2 ,

where A,A1,A2 ∈ A and R,R1,R2 ∈ R.
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The normal form limits the use of inverse roles to the RHS of role inclusions, and excludes
concept inclusion axioms whose LHS comprises complex concepts of the form ∃P1.∃P2. . . .∃Pn.⊤
or ∃P1.∃P2. . . .∃Pn.A, where each Pi is either Ri or R−i , for n > 1. Thus, when a TBox is in normal
form, its complex concepts are limited to being of the form A, ∃R.⊤ and ∃R.A, for some concept
name A and role name R.

Theorem 1. Each ELHIℓin TBox T can be transformed in linear time into a TBox T ′ in normal
form such that the size of T ′ is linear in the size of T , and T ′ is a model conservative extension of
T .

Proof. The claim follows by showing that each axiom that is not in normal form can be encoded by
a set of normal form axioms of linear size. To remove inverse roles on the LHS of role inclusions,
each role inclusion axiom of the form R−1 ⊑R2 can be replaced by the equivalent axiom R1⊑R−2 . To
remove concept inclusion axioms whose LHS comprises complex concepts, two steps are needed:

1. Each concept inclusion axiom of the form ∃P1.∃P2. . . .∃Pn.φ ⊑D, where φ is either a concept
name or ⊤ and D is the grammar non-terminal above, is encoded by the following n concept
inclusion axioms:

∃Pn.φ ⊑ An−1,

∃Pn−1.An−1 ⊑ An−2,

. . . ,

∃P1.A1 ⊑ D,

where A1,A2, . . . ,An−1 are fresh concept names. For each 1 ⩽ i ⩽ n, if Pi is Ri, the axiom is
in normal form; if Pi is R−i , the following step is needed.

2. Each concept inclusion axiom that uses an inverse role R− can be encoded by a modified
concept inclusion axiom and a new role inclusion axiom. The modified concept inclusion
axiom is obtained by replacing R− with a fresh role name R∗, while the new role inclusion
axiom is R⊑ R−∗ .

As is customary, henceforth we define and work with canonical models (also called universal
models (Baader et al., 2017)) of KBs. We begin by defining the base model of a given ABox.

Definition 2 (Base model). The base model IA of the ABox A is defined as follows:

(1) ∆IA = ind(A);

(2) aIA = a, for a ∈ ind(A);

(3) AIA = {a | A(a) ∈ A}, for each concept name A;

(4) RIA = {(a,b) | R(a,b) ∈ A}, for each role name R.

We then use the base model to generate the canonical model of a KB.
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Definition 3 (Canonical model). To build the canonical model for an ELHIℓin KB K = (T ,A),
where T is in normal form, we take the base model IA as I0 and apply the following rules induc-
tively to obtain Ik+1 from Ik:

(0) if d ∈ ∆Ik then d is added to ∆Ik+1 ;

(i) if d ∈ AIk then d is added to AIk+1 ;

(ii) if (d,d′) ∈ RIk then (d,d′) is added to RIk+1 ;

(iii) if d ∈ AIk
1 and A1 ⊑ A2 ∈ T , then d is added to AIk+1

2 ;

(iv) if (d,d′) ∈ RIk
1 and R1 ⊑ R2 ∈ T , then (d,d′) is added to RIk+1

2 ;

(v) if (d,d′) ∈ RIk
1 and R1 ⊑ R−2 ∈ T , then (d′,d) is added to RIk+1

2 ;

(vi) if (d,d′) ∈ RIk and either (a) ∃R.⊤ ⊑ A ∈ T , or (b) d′ ∈ DIk and ∃R.D ⊑ A ∈ T , then d is
added to AIk+1 ;

(vii) if d ∈ AIk , A ⊑ ∃R.⊤ ∈ T and there is no d′′ such that (d,d′′) ∈ RIk , then (d,d′) is added to
RIk+1 and d′ is added to ∆Ik+1 , where d′ is a fresh labelled null (i.e., a new domain element).

We then take a fixpoint interpretation, as k→ ∞. The resulting interpretation satisfies all the inclu-
sions in T and all the assertions inA— i.e., it is a model forK— and is called the canonical model
of K = (T ,A), denoted by JK.

We note that the above procedure is also called the chase procedure, with the resulting model
being called the chase.

In terms of notation, we will sometimes view the canonical model JK as a set of assertions, i.e.,
A(d) ∈ JK if and only if d ∈ AJK and R(d,d′) ∈ JK if and only if (d,d′) ∈ RJK for each concept
name A and each role name R. Note that, in our setting, such assertions may contain labelled nulls.

3.2 Regular Languages and Conjunctive Regular Path Queries

A non-deterministic finite-state automaton (NFA) over a set of symbols Σ is a tuple M =
(Q,Σ,δ ,q0,F), where Q is a finite set of states, δ ⊆ Q×Σ×Q is the transition relation, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final states. L(M) denotes the language defined by an NFA
M, and Σ∗ denotes the set of all strings over symbols in Σ, including the empty string ε . A language
that is recognised by a NFA is a regular language (Berry & Sethi, 1986).

Regular languages can also be denoted by regular expressions. A regular expression over Σ is
either a symbol a ∈ Σ, or is formed by applying the operations of concatenation, alternation and
Kleene closure to regular expressions as follows: α1α2 (concatenation), α1|α2 (alternation) and
α∗ (Kleene closure), where α,α1,α2 are regular expressions. Given a regular expression α , the
language of α is denoted by L(α).

To define the queries below, we assume that there are countably infinite sets of variables V,
individual names I, concept names A and role names R. There is also a set of roles P, where each
P ∈ P is either a role name R or its inverse R−. A term t is an individual name in I or a variable in V.
An atom is of the form α(t, t ′), where t, t ′ are terms, and α is an NFA or regular expression defining
a regular language over the set of symbols P∪A. A string s ∈ (P∪A)∗ is a path.
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A conjunctive two-way regular path query (C2RPQ) q of arity n has the form q(⃗x)← ∃⃗y γ (⃗x, y⃗),
where x⃗ = x1, . . . ,xn and y⃗ = y1, . . . ,ym are tuples of variables, and γ (⃗x, y⃗) is a conjunction of atoms
with variables from x⃗ and y⃗ (Bienvenu et al., 2015). Atom q(⃗x) is the head of q, denoted by head(q),
and γ (⃗x, y⃗) is the body of q, denoted by body(q). The variables in x⃗ are the answer variables of q,
while those in y⃗ are the existentially quantified variables of q. Subsequently, we usually omit the
existential quantifier, and represent conjunction using commas. A union of conjunctive two-way
regular path queries (UC2RPQ) q of arity n is a union (or set) of C2RPQs each of which has the
same head q(⃗x).

A conjunctive (one-way) regular path query (CRPQ) is a C2RPQ in which only symbols from
R∪A are allowed in atoms (i.e., disallowing role inverses). A Boolean C(2)RPQ is a C(2)RPQ
with no answer variables. A two-way regular path query (2RPQ) is a C2RPQ with a single atom in
its body. A regular path query (RPQ) is a CRPQ with a single atom in its body. A two-way path
query (2PQ) is a 2RPQ head(q)← α(x,y) such that α ∈ (P∪A)∗. A path query (PQ) is an RPQ
head(q)←α(x,y) such that α ∈ (R∪A)∗. In both the latter cases, α is called the path of q, denoted
by path(q).

A conjunctive query (CQ) q is a CRPQ such that, for each atom α(t, t ′)∈ body(q), α ∈ (P∪A).
Intuitively, a CQ has as body a conjunction of atoms whose predicates are in A∪P (without regular
expressions). Given a C(2)RPQ q with answer variables x⃗ = x1, . . . ,xn and an n-tuple of individuals
aaa = (a1, . . . ,an), we use q(aaa) to refer to the Boolean C(2)RPQ obtained from q by replacing xi with
ai in body(q), for every 1 ⩽ i ⩽ n. An instance query (IQ) takes one of the following two forms:
(i) q(x)← A(x), where A ∈ A (concept instance query), or (ii) q(x,y)← P(x,y), where P ∈ P (role
instance query).

3.2.1 SEMANTICS OF C2RPQS

We now define the semantics of C2RPQs (Bienvenu et al., 2015) and UC2RPQs. Given individual
names a and b, an interpretation I, and an NFA or regular expression α over the alphabet P∪A, we
say that b α-follows a in I, denoted by I |= a α−→ b, if and only if there is some w = u1 · · ·un ∈ L(α)
and some sequence e0, . . . ,en with ei ∈ ∆I , 0 ⩽ i ⩽ n, such that e0 = aI and en = bI , and for all
1⩽ i⩽ n: (i) if ui = A ∈A, then ei−1 = ei ∈ AI , and (ii) if ui = P ∈P, then (ei−1,ei)∈ PI . A match
for a C2RPQ q in an interpretation I is a mapping π from the terms in body(q) to the elements in
∆I such that:

1. π(c) = cI if c ∈ I;

2. I |= π(t) α−→ π(t ′) for each atom α(t, t ′) in q.

This definition is easily extended to UC2RPQs by saying that there is a match for a UC2RPQ q in
an interpretation I if there is a match for some C2RPQ in q in I. When the query q is a CQ and the
interpretation I is the canonical model, we will also refer to the mapping π as a homomorphism.

To simplify notation, we often view all atoms in the body of the query as being binary, with
each atom of the form A(t), where A ∈ A and t ∈ V∪ I, being viewed as a binary atom A(t,z), where
z is a fresh variable (that is, newly invented and not appearing elsewhere). This transformation
is reversible since the sets of concept names and of role names are disjoint. The semantics of a
transformed query remains that of the original. However, we will continue to use unary atoms in
some examples, whenever this improves readability.
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Given a KB K, an interpretation I and a (U)C2RPQ q, we say that I |= q if there is a match for
q in I, and that K |= q if I |= q for every model I of K. Also, we use qI to denote:

qI := {t | I |= q(t)}

and qK to denote:
qK := {t | t ∈ qI for every model I of K}.

Given an ABox A, we use A |= q as a shorthand for (∅,A) |= q, where (∅,A) is a KB with an
empty TBox.

Given a (U)C2RPQ q of arity n, a tuple of individual names aaa = (a1, . . . ,an) is a certain answer
for q with respect to a KB K if and only if K |= q(aaa).

3.3 Perfect Rewritings of CQs

Given a TBox T , in this paper we are concerned with rewriting CQs into UC2RPQs. Given a CQ
q, we use the axioms of T to rewrite q into a C2RPQ p that returns, when evaluated over the data
instance (ABox) A, all the certain answers of q with respect to (T ,A). The rewriting p depends
only on the TBox T and the given query q; it is independent of the ABox A. In query processing,
therefore, we use A only in the final step, when the rewriting is evaluated on it.

We call a CQ q and a TBox T UC2RPQ-rewritable if there exists a UC2RPQ p such that, for
any ABox A and any tuple a of individuals in ind(A), we have

(T ,A) |= q(a) if and only if A |= p(a).

In this case, we say that p is a perfect UC2RPQ rewriting of q with respect to T .

4. Harmless ELHIℓin

Extending DL-LiteR with qualified existential quantification on the left-hand side of concept inclu-
sion axioms is equivalent to allowing inverse roles in role inclusion axioms in ELHℓin (resulting
in ELHI lin, defined in Section 3). This is shown in (Calvanese et al., 2013) to result in PTIME-
completeness of CQ answering with respect to data complexity; therefore a rewriting in C2RPQs
for this language is not feasible — if, as is normally assumed, NLOGSPACE is a proper subclass
of PTIME — since the data complexity of answering C2RPQs is in NLOGSPACE. In fact, inverse
roles allow the encoding of a conjunction of concepts on the left-hand side of axioms (as shown in
the example below), which is known to lead to PTIME-hardness ((Calvanese et al., 2013), Theorem
4.3).

Example 5. Consider the KB K with ABox {Teacher(alice),Pro f essor(alice)} and TBox com-
prising the axioms:

Teacher ⊑ ∃teaches.⊤
teaches ⊑ taughtBy−

∃taughtBy.Pro f essor ⊑ Course

∃teaches.Course ⊑ Person

Using the chase procedure from Definition 3 to produce the canonical model JK, the axiom
Teacher⊑∃teaches.⊤ results in teaches(alice,d0), where d0 is a fresh labelled null, being added to
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JK (using rule (vii)). Then teaches ⊑ taughtBy− results in taughtBy(d0,alice) being added to JK
(rule (v)), ∃taughtBy.Pro f essor ⊑Course results in Course(d0) being added to JK (rule (vi)), and
∃teaches.Course ⊑ Person results in Person(alice) being added to JK (rule (vi)). Thus, the TBox
encodes the axiom Teacher⊓Pro f essor ⊑ Person.

In this paper, we investigate the possibility of finding a sub-language of ELHIℓin whose CQ
answering problem has NLOGSPACE data complexity. We do so by first identifying a syntactic
property of ELHIℓin TBoxes, which we call the harmless property, that prevents the above encoding
of rules of the type C1⊓C2 ⊑C3. The harmless property also ensures that each instance query (IQ)
can be rewritten as a 2RPQ, as we show in Section 5. Building on this and using results from (Kikot
et al., 2012; Kontchakov & Zakharyaschev, 2014), we show in Section 6 that CQs over harmless
ELHIℓin TBoxes can be rewritten as UC2RPQs, thus avoiding a polynomial blow-up.

Before defining harmless ELHIℓin TBoxes, denoted by ELHIℓinh , we introduce some auxiliary
definitions.

Definition 4. Let R and R′ be role names appearing in an ELHIℓin TBox T that is in normal form.
If there exist role names R0, . . . ,Rn in T such that (i) R = R0, R′ = Rn and (ii) either R = R′ or, for
1⩽ i⩽ n, either Ri−1 ⊑ Ri ∈ T or Ri−1 ⊑ R−i ∈ T , then:

1. if the number of inverse roles R−i is even, we write R ⇀T R′;

2. if the number is odd, we write R ⇀T R′−.

The syntactic property defined above is equivalent to the semantic property of role inclusion
with respect to an ELHIℓin TBox. This is stated in the following proposition.

Proposition 1. Given two role names R,R′ appearing in an ELHIℓin TBox T in normal form, we
have:

1. T |= R⊑ R′ if and only if R ⇀T R′, and

2. T |= R⊑ R′− if and only if R ⇀T R′−.

The proof of the above proposition follows from the observation that the only way to infer a role
inclusion in an ELHIℓin TBox in normal form is through the closure of role inclusion axioms of
the form R1 ⊑ R2 or R1 ⊑ R−2 .

We now define the harmless condition for two given role names appearing in an ELHIℓin TBox
in normal form:

Definition 5. Let R1 and R2 be two, not necessarily distinct, role names appearing in an ELHIℓin
TBox T in normal form. We say that R1 and R2 are mutually harmless roles with respect to T if
there is no role name R3 in T (which may be equal to R1 or R2) such that R3 ⇀T R1 and R3 ⇀T R−2 .

Example 6. First note that teaches and taughtBy in Example 5 are not mutually harmless because
teaches⊑ taughtBy− is in T . Now consider a modification to the KB K in Example 5, whereby we
(1) add the axiom teaches⊑ contributesTo, and (2) replace teaches by contributesTo in the fourth
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axiom, giving a TBox comprising the following axioms:

Teacher ⊑ ∃teaches.⊤
teaches ⊑ taughtBy−

∃taughtBy.Pro f essor ⊑ Course

teaches ⊑ contributesTo

∃contributesTo.Course ⊑ Person

Notice that the role names taughtBy and contributesTo are not mutually harmless, since teaches⊑
taughtBy− and teaches ⊑ contributesTo are axioms in the TBox. With the ABox from Exam-
ple 5, alice would still be added to the interpretation of Person, i.e., the TBox would encode
the axiom Teacher ⊓ Pro f essor ⊑ Person. This would continue to be the case even if, instead
of the axiom ∃contributesTo.Course⊑ Person, we had the axioms Course⊑ LearningActivity and
∃contributesTo.LearningActivity⊑ Person.

In order to prevent the encoding of conjunction on the LHS of axioms as demonstrated in the
previous example, we need also to determine subsumption between concepts in an ELHIℓin TBox
T . We use the digraph representation of T introduced by Lembo, Santarelli, and Savo (2013).
Note that their method applies to OWL 2 QL TBoxes, which include additional constructs such
as attributes and value domains, but crucially do not allow qualified existential quantification on
the LHS of axioms. We limit the graph construction below to constructs in ELHIℓin, excluding
qualified existential quantification.

Definition 6. Let T be an ELHIℓin TBox in normal form. We construct a directed graph GT =
(NT ,ET ), where NT is a set of nodes and ET ⊆ NT ×NT is a set of edges, as follows. For each
concept name A in T , there is a node A ∈ NT . For each role name R in T , there are nodes ∃R and
∃R− in NT . The edges ET are defined as follows:

1. If A⊑ B ∈ T , for concept names A and B, then (A,B) ∈ ET .

2. If A⊑ ∃R.⊤ ∈ T , for concept name A and role name R, then (A,∃R) ∈ ET .

3. If R⊑ S ∈ T , for role names R and S, then (∃R,∃S) ∈ ET and (∃R−,∃S−) ∈ ET .

4. If R⊑ S− ∈ T , for role names R and S, then (∃R,∃S−) ∈ ET and (∃R−,∃S) ∈ ET .

5. If ∃R.⊤⊑ A ∈ T , for role name R and concept name A, then (∃R,A) ∈ ET .

We write A⇒T B if there is a path from A to B in GT .

Example 7. If we replaced Pro f essor and Course by⊤ in the two axioms using qualified existential
quantification in the previous example, then GT would contain a path from Teacher to Person via
∃teaches and ∃contributesTo, i.e., Teacher ⇒T Person. As we prove shortly, this implies that
T |= Teacher ⊑ Person.

We are now ready to define the class of harmless ELHIℓin TBoxes:
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Definition 7. Let T be an ELHIℓin TBox in normal form, with A1,A2,A3 ∈ A, and R1,R2 ∈R. We
say that T is harmless if, whenever ∃R2.A2 appears on the left-hand side of an axiom in T as well
as there being either an axiom ∃R1.⊤⊑ A1 or an axiom ∃R1.A3 ⊑ A1 in T such that A1⇒T A2, then
we have that R1 and R2 are mutually harmless roles with respect to T . The language of all harmless
ELHIℓin TBoxes is denoted by ELHIℓinh .

Example 8. The TBox in Example 5 is not harmless because it contains the axioms
∃taughtBy.Pro f essor ⊑ Course and ∃teaches.Course ⊑ Person (where Course plays the role of
both A1 and A2 from the above definition), where teaches and taughtBy are not mutually harmless.

The TBox in Example 6 (modified to include Course ⊑ LearningActivity and
∃contributesTo.LearningActivity ⊑ Person instead of ∃contributesTo.Course ⊑ Person)
is not harmless since it contains the axioms ∃taughtBy.Pro f essor ⊑ Course,
∃contributesTo.LearningActivity ⊑ Person and Course ⊑ LearningActivity (so Course ⇒T
LearningActivity), and taughtBy and contributesTo are not mutually harmless.

Removing the axiom teaches⊑ taughtBy− from the TBoxes of Examples 5 and 6 would make
each of them harmless.

For an ELHIℓin TBox T which is not harmless, it is possible that an axiom such as A⊑ B can
be inferred from T without it being the case that A⇒T B (i.e., by relying on axioms which use
qualified existential quantification). We prove below that, for harmless ELHIℓin, the only way we
can have T |= A⊑ B is if A⇒T B.

Proposition 2. If T is an ELHIℓinh TBox in normal form, with A,B ∈ A, then T |= A ⊑ B if and
only if A⇒T B.

Proof. The “if” direction follows from Theorem 2 in (Lembo et al., 2013). The “only if” direction
also follows from (Lembo et al., 2013), except in a case where qualified existential quantification
is used. Consider a set of sound and complete inference (or classification) rules for ELHI, such
as those given in (Baader et al., 2005) and extended in (Kazakov, 2009) or (Vu, 2008). There is
only one rule, given as rule (1) below, in the set given in (Kazakov, 2009) which involves qualified
existential quantification. Let T be a harmless ELHIℓin TBox and assume that the first use of
rule (1) derives the axiom A⊑ B, where rule (1) is as follows:

A⊑ ∃R.C C ⊑ D ∃R.D⊑ B
A⊑ B

(1)

for some role name R and some concept names C and D. Each of A ⊑ ∃R.C and C ⊑ D might
be derived from T , but ∃R.D ⊑ B ∈ T , since no axioms with qualified existential quantification
on the LHS can be derived using the rules in (Kazakov, 2009). The axiom A ⊑ ∃R.C might have
been derived from one such as E ⊑ ∃S.C, for concept name E and role name S, in T , by repeated
application of rules using the facts that T |= E ⊑ A and T |= S ⊑ R. So, by Proposition 1, we have
S ⇀T R. Because it is the first invocation of rule (1), both E ⊑ A and C⊑D must have been derived
without using axioms involving qualified existential quantification; therefore we have E ⇒T A and
C⇒T D.
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When converting E ⊑ ∃S.C into our normal form, we get the axioms

E ⊑ ∃U.⊤
U ⊑ S

U ⊑ V−

∃V.⊤ ⊑ C

for new role names U and V . However, T is not harmless since we have ∃R.D on the LHS of an
axiom, ∃V.⊤ ⊑C, C⇒T D, and R and V not mutually harmless (since U ⇀T R and U ⇀T V−),
a contradiction. We conclude that an inclusion such as A ⊑ B cannot be inferred using axioms
involving qualified existential quantification, and hence T |= A⊑ B if and only if A⇒T B.

We note that each DL-LiteR KB is also an ELHIℓinh KB, since complex concepts of the form
∃R.D are forbidden on the LHS of DL-LiteR TBoxes. Also, each ELHℓin KB is an ELHIℓinh
KB, since inverse roles are not included in ELHℓin and therefore roles are always harmless. Thus,
ELHIℓinh is a generalisation of both DL-LiteR and ELHℓin.

In the next section, we show that an ELHIℓinh TBox cannot simulate a conjunction of concepts
on the left-hand side of a concept inclusion axiom. We also show that, given an ELHIℓinh TBox T ,
each IQ over T can be rewritten into a 2RPQ.

5. Rewriting Instance Queries into 2RPQs under ELHIℓinh

As shown in Example 3, it is not possible to generate a first-order query as a perfect rewriting if we
allow qualified existential quantification on the left-hand side of concept inclusion axioms, even in
the case where the input query is an instance query (IQ). In this section, we present a technique that
uses the expressive power of NFAs in order to rewrite IQs into 2RPQs under ELHIℓinh TBoxes.

We first describe in Section 5.1 a query rewriting procedure modified from that in (Calvanese
et al., 2007). The original procedure was designed to rewrite a given CQ into a union of CQs with
respect to a DL-LiteR TBox. When modified to take account of ELHIℓinh TBoxes, the procedure
may not terminate. To address this issue, we propose in Section 5.2 a novel algorithm, which
makes use of NFAs, that is able to rewrite IQs into 2RPQs under ELHIℓinh TBoxes by encoding
the possibly infinitely many steps of the above rewriting procedure. In Section 6, we extend the
treatment to show that CQs can be rewritten into UC2RPQs.

5.1 Rewriting Instance Queries to CQs for ELHIℓinh

The procedure we present in this subsection takes as input an IQ and an ELHIℓinh TBox, and pro-
duces as output a (possibly infinite) set of CQs. This set of CQs is then interpreted as a union of
conjunctive queries which can be evaluated over the ABox. As stated above, the procedure is a
modification of one from (Calvanese et al., 2007).

Recall that, in an IQ, the single atom in the body of the query is of the form α(t, t ′), where t, t ′

are terms (either variables from V or individual names from I), and α ∈ (P∪A), where P is the set
of role names and their inverses, and A is the set of concept names.

We also recall some terminology relating to CQs from (Calvanese et al., 2007). A term of an
atom in a CQ is said to be bound if it corresponds to (i) an answer variable, (ii) a shared variable,
that is, a variable occurring at least twice in the query body, or (iii) a constant, that is, an element in
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Procedure Rewrite(q,T )
input : Instance query q, TBox T .
output: Set of conjunctive queries Q.

1 Q := {q};
2 repeat
3 Q′ := Q ;
4 foreach qr ∈ Q′ do
5 foreach axiom I ∈ T do
6 if I is applicable to atom g in qr then
7 qr′ := replace g in qr by gr(g, I) ;
8 Q := Q∪{qr′}

9 until Q′ = Q;
10 return Q

I. Conversely, a term of an atom in a query is unbound if it corresponds to a non-shared existentially
quantified variable. As is customary, we adopt the symbol ‘ ’ to represent an unbound term1.

Procedure Rewrite repeatedly applies rewriting rules, based on the axioms in the TBox given
as input, to the atoms of CQs generated as a result of the process. So we need to define when an
axiom I is applicable to an atom (used on line 6), as well as the result of applying the rewriting rule
corresponding to I (used on line 7). These definitions are modified from those in (Calvanese et al.,
2007).

Definition 8. An axiom I is applicable to an atom A(x1,x2) for A ∈ A if the RHS of I is A. An
axiom I is applicable to an atom R(x1,x2) for R ∈ R if either (1) the RHS of I is ∃R.⊤ and x2 = ;
or (2) the RHS of I is either R or R−.

The rewriting rules listed below are those of (Calvanese et al., 2007), except that we add rule (c)
in order to deal with concept inclusion axioms where qualified existential quantification appears
on the left-hand side (which are disallowed by DL-LiteR). Let I be an inclusion axiom that is
applicable to an atom g. The set of atoms obtained from g by applying I, denoted by gr(g, I), is
defined as follows:

(a) If g = A2(x1, ) and I = A1 ⊑ A2, then gr(g, I) = {A1(x1, )};

(b) If g = A(x1, ) and I = ∃R.⊤⊑ A, then gr(g, I) = {R(x1, )};

(c) If g = A1(x1, ) and I = ∃R.A2 ⊑ A1, then gr(g, I) = {R(x1,z),A2(z, )}, where z is a fresh
variable;

(d) If g = R(x1, ) and I = A1 ⊑ ∃R.⊤ then gr(g, I) = {A1(x1, )};

(e) If g = R2(x1,x2) and I = R1 ⊑ R2 , then gr(g, I) = {R1(x1,x2)};

(f) If g = R2(x1,x2) and I = R1 ⊑ R−2 , then gr(g, I) = {R1(x2,x1)}.
1. The underscore symbol ‘ ’ is commonly used in logic programming, where it is named “don’t care”. In the presence of

multiple occurrences of “don’t care” symbols in a formula, such symbols are to be considered as distinct existentially
quantified variables.

866



EFFICIENT ONTOLOGY-MEDIATED QUERY ANSWERING

We prove in Theorem 2 below that the output produced by Procedure Rewrite, which we
denote by Rewrite(q,T ), generates the perfect rewriting of q with respect to T . The original
procedure (Calvanese et al., 2007) takes as input a CQ and includes a reduction step within the
outer foreach loop (starting on line 4) in order to remove redundant atoms (an atom is redundant
in query q if its removal from q results in a query equivalent to q). Our version of the procedure
takes as input an IQ rather than a CQ. We also prove below (in Lemma 3) that each CQ output by
the procedure is minimal (i.e., contains no redundant atoms); hence, no reduction step is necessary
in our procedure.

Example 9. Consider the TBox in Example 5 but leaving out the axiom teaches⊑ taughtBy−, that
is the TBox becomes

Teacher ⊑ ∃teaches.⊤
∃taughtBy.Pro f essor ⊑ Course

∃teaches.Course ⊑ Person

which is harmless.
Let q be the following concept IQ

q(x)← Person(x, ).

Using rule (c) of the Rewrite procedure, we can apply ∃teaches.Course⊑ Person to q to get

q(x)← teaches(x,z1),Course(z1, ).

We can then apply ∃taughtBy.Pro f essor ⊑Course to the above query, yielding

q(x)← teaches(x1,z1), taughtBy(z1,z2),Pro f essor(z2, ).

The union of the above three CQs is a perfect rewriting for the given query. With the ABox

{ Teacher(alice), taughtBy(CS101,bob), Pro f essor(bob),

teaches(carol,CS101), teaches(dave,CS201), Course(CS201)}

we correctly receive the answers dave, because he teaches a course (CS201), and carol, because
she teaches something (CS101) which is taught by a professor (bob). We do not receive alice as an
answer because, although she teaches something, we do not know that what she teaches is a course.

Note that the rewriting rule associated with axiom Teacher ⊑ ∃teaches.⊤ (i.e., rule (d)) cannot
be applied at any stage, since the second argument of teaches (i.e., z1) is bound whenever teaches
appears in a query above. We will show in Lemma 4 below that, when the TBox is harmless, no
shared variable (such as z1 above) is mapped to a labelled null when a match is found for a CQ
generated from an initial IQ; thus, requiring that the second argument of R be unbound in rule (d) is
correct.

Example 10. Now consider the full TBox in Example 5, that is, including the axiom teaches ⊑
taughtBy−. Recall that this TBox is not harmless. Starting from the same concept IQ as in Ex-
ample 9, we obtain the same rewritten queries as in that example plus the following, by applying
teaches⊑ taughtBy− to the last rewritten query:

q(x1)← teaches(x1,z1), teaches(z2,z1),Pro f essor(z2, ).
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Note that the rewriting rule associated with axiom Teacher ⊑ ∃teaches.⊤ (i.e., rule (d)) still cannot
be applied at any stage. With ABox {Teacher(alice),Pro f essor(alice)}, none of the four queries
returns any answers (because there are no Person or teaches assertions in the ABox), so the rewriting
does not encode the axiom Teacher⊓Pro f essor ⊑ Person which is logically implied by the TBox
(cf. Example 5). As a result, the rewriting is not correct, but we require Procedure Rewrite to
produce a correct rewriting only when it is given a TBox which is harmless.

As can be seen in the above examples, Procedure Rewrite produces CQs of a restricted form
when given a concept IQ. We call this subclass of CQs two-way simple path conjunctive queries.

Definition 9. A two-way simple path conjunctive query (2SPCQ) is a CQ of one of the following
forms:

1. q(x)← A(x, ),

2. q(x)← τR1(x,y1),τR2(y1,y2), . . . ,τRn(yn−1, ), or

3. q(x)← τR1(x,y1),τR2(y1,y2), . . . ,τRn(yn−1,yn),A(yn, ),

where:

• n⩾ 1;

• A ∈ A and R1, . . . ,Rn ∈ R.

• τR(x,y) is either R(x,y) or R(y,x);

• each variable (x, and yi, 1⩽ i⩽ n) is distinct.

A 2SPCQ head(q)← Z1(x0,x1), . . . ,Zn(xn−1,xn) is equivalent to a 2RPQ of the form head(q)←
Y1 · · ·Yn(x0,xn), where (1) Yi = Zi if Zi(xi−1,xi) or Zi(x, ) appears in the 2SPCQ, or (2) Yi = Z−i if
Zi(xi,xi−1) appears in the 2SPCQ. We define path(q) to be Y1 · · ·Yn. For example, if q is q(x)←
P(x,y1),T (y2,y1),B(y2, ), where P and T are role names and B is a concept name, then path(q) is
PT−B, and if q is q(x)← P(x,y1),T ( ,y1), then path(q) is PT−. Throughout the paper we will use
either the 2RPQ form or the CQ form of a 2SPCQ, whichever is more natural in the given context.

The following two lemmas show that, when Procedure Rewrite is given a concept IQ, each
query in its output is a 2SPCQ, and when it is given a role IQ, each query in its output is a role IQ.

Lemma 1. Let T be an ELHIℓinh TBox in normal form, and q be a concept IQ. If qrew ∈
Rewrite(q,T ), then qrew is a 2SPCQ.

Proof. Let q be a concept IQ of the form q(x)← A(x, ). The proof is by induction on the number
of rewriting steps needed to produce qrew. We denote by Q[i] the set of the queries produced after
the i-th iteration of the repeat loop (starting on line 2) in Procedure Rewrite.

BASE STEP. Q[1] contains q, which is a 2SPCQ of form (1), along with the queries obtained
by the first rewriting step. The only rewriting rules which are applicable to q are (a), (b) and (c).
Rule (a) generates a 2SPCQ of form (1), (b) a 2SPCQ of form (2), and (c) a 2SPCQ of form (3).

INDUCTIVE STEP. We assume that each query in Q[i], for some i⩾ 1, is a 2SPCQ, and consider
a query q ∈Q[i+1]. Query q has been generated by applying some rewriting rule to a query q′ ∈Q[i].
We know that q′ is a 2SPCQ, so consider each of the rewriting rules (a)–(f) in turn. To apply (a), (b)
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or (c), q′ must be of 2SPCQ form (1) or (3). By applying (a), q is of the same form as q′. If (b) is
applied, q is of form (2) in both cases. If (c) is applied, then q is of form (3) in both cases. For (d)
to be applied, q′ must be of form (2) because no arguments are unbound in role atoms in a 2SPCQ
of form (3). Furthermore, the role atom to be replaced must be the rightmost in q′, because that is
the only atom whose second argument is unbound. Hence, q is of form (3) after applying (d). If (e)
or (f) is applied to q′, then q′ must be of form (2) or (3). In each case, q is of the same form as
q′.

Lemma 2. Let T be an ELHIℓinh TBox in normal form, and q be a role IQ. If qrew ∈Rewrite(q,T ),
then qrew is a role IQ.

Proof. When Procedure Rewrite is given a role IQ, i.e., a query of the form q(x,y)← R(x,y) or
q(x,y)← R(y,x), where R is a role name, only rewriting rules (e) and (f) apply. As a result, it should
be clear that each query in the output of the procedure is also a role IQ.

Lemma 3. Given ELHIℓinh TBox T and IQ q, each CQ in Rewrite(q,T ) is minimal.

Proof. If q is a role IQ, minimality of each query in the output follows from Lemma 2.
So assume that q is a concept IQ. Hence, by Lemma 1, each query in the output is a 2SPCQ.

Clearly q itself and any other query of 2SPCQ form (1) in the output is minimal. Therefore we need
to show that any 2SPCQ of form (2) or (3) in the output is minimal. The atom A(yn, ) in a 2SPCQ
of form (3) cannot be redundant. In fact, since each atom in a 2SPCQ of form (3) is connected by a
chain of variables to the output variable x, and by another chain to the variable yn which appears in
an atom whose predicate name is a concept name while all other predicate names in the query are
role names, we conclude that no atom in a 2SPCQ of form (3) can be redundant.

Now assume that q is an 2SPCQ of form (2) in Rewrite(q,T ). If there are any redundant atoms
in q, then they must include the last atom, and the last two atoms in q are either R(yn−1,yn),R( ,yn)
or R(yn,yn−1),R(yn, ), for some role name R. Consider the first case (the second case is similar).
Atom R( ,yn) must have been produced by replacing S(yn, ) for some role name S. This must mean
that we have S ⇀T R−, so R and S are not mutually harmless. Atom S(yn, ) must have arisen
through replacing A(yn, ), for some concept name A such that ∃S.⊤ ⊑ A ∈ T . Atom A(yn, ) must
have arisen through some number of applications of rewriting rule (a), starting from B(yn, ), for
some concept name B. So we have that A⇒T B. The pair of atoms R(yn−1,yn),B(yn, ) must have
come about through applying rule (c) to some C(yn−1, ), with ∃R.B ⊑ C ∈ T . But now we have
∃S.⊤ ⊑ A and ∃R.B ⊑ C in T , with A⇒T B and S and R not mutually harmless; hence, T is not
harmless, a contradiction. We conclude that q is minimal.

Before proving the following lemma and theorem, we introduce the notion of a chase graph for
an assertion in a canonical model.

Definition 10. Let K = (T ,A) be a KB, where T is an ELHIℓin TBox (not necessarily harmless).
Let JK be the canonical model of K, A(a) a concept assertion in JK, and R(b,c) a role assertion in
JK, where each of a, b and c is either an individual or a labelled null. A chase graph GK = (V,E)
for A(a), respectively R(b,c), is a directed graph showing how A(a), respectively R(b,c), can be
generated fromA and T using the chase rules of Definition 3. Let α be an axiom used in the chase,
which is applied to either one or two assertions, say x and y, and generates an assertion z. Then
there is a directed edge in E from each of the nodes representing x and y to the node representing
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z. Nodes representing assertions from A used in the chase are source nodes in GK, while the node
representing A(a), respectively R(b,c), in GK is the single sink node, called the root of GK. We
assume that GK is minimal in the sense that there are no edges present that are unnecessary for the
generation of A(a), respectively R(b,c). This also implies that GK is acyclic. The height of GK is
the length of the longest path from any source node to the root.

Example 11. Consider the TBox T comprising the axioms

Teacher ⊑ ∃teaches.⊤
teaches ⊑ taughtBy−

∃taughtBy.⊤ ⊑ Course

This is a harmless simplification of the TBox in Example 5. Let alice be an individual and d be
a labelled null. Assume that the ABox A contains the assertion Teacher(alice). The chase graph
for Course(d) would be a simple path, with Teacher(alice) as the single source node, followed by
teaches(alice,d) (by applying Teacher⊑∃teaches.⊤), followed by taughtBy(d,alice) (by applying
teaches⊑ taughtBy−), and followed by Course(d) as the root (by applying ∃taughtBy.⊤⊑Course).

When considering the correctness of Procedure Rewrite, we can observe that the rewriting
rules of Definition 8 are essentially mirror images of the chase rules in Definition 3, except that
rewriting rule (d) requires that the second argument of the role atom be unbound (as pointed out in
Example 9), whereas chase rule (vii) can generate a labelled null which can be shared. By “shared”
we mean the following.

Definition 11. Let GK = (V,E) be a chase graph for the assertion A(a) represented by the root of
GK. Let u ∈ V represent an assertion generated by applying chase rule (vii) in which labelled null
w is generated. If there is more than one path from u to the root of GK, we say that w is shared.

For KB K = (T ,A), the following lemma shows that if T is harmless, then no shared labelled
null appears in a chase for any concept assertion in JK. (Note that the labelled null appearing in the
chase graph in Example 11 is not shared.)

Lemma 4. LetK= (T ,A) be a KB, where T is an ELHIℓin TBox in normal form. If T is harmless,
then no shared labelled null appears in a chase graph for any concept assertion in JK.

Proof. We prove the contrapositive. Let GK = (V,E) be a chase graph for the assertion A(a) in
JK. Assume that labelled null w is shared in GK. Chase rule (vii) must have been used to generate
w. Let the assertion in which w first appears, which must be of the form R(b,w) for some role
name R and individual or labelled null b, be represented by node u ∈ V (see Figure 1). Since w
is shared, there must be (at least) two paths p1 and p2 from u to the root of GK. Paths p1 and p2
must also “converge” at some node because there is a single root node in GK. Let z ∈ V be the
node of smallest distance from u at which p1 and p2 meet. Node z must represent an assertion
resulting from applying chase rule (vi)(b), since that is the only chase rule which applies to a pair
of assertions (nodes). Assume that the axiom used when applying the rule was ∃S.B⊑C. Hence, z
represents either (i) the assertion C(b), or (ii) the assertion C(w), and z has predecessors x and y in
GK representing assertions (i) S(b,w) and B(w), or (ii) S(w,b) and B(b), respectively.

Next, we show that T is not harmless. We will consider only case (i) above; case (ii) can be
proved similarly. Recall that R(b,w) is represented by u ∈ V . Let S(b,w) be represented by x and
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R(b,w) U(b,w)

V (w,b) P(w,b) E(w) B(w)

C(b)

S(b,w)

Figure 1: Fragment of the chase graph used in the proof of Lemma 4, where dashed arrows repre-
sent paths, possibly of length zero.

B(w) be represented by y. Since there is a path from u to x, we have that R ⇀T S. Now consider
the path from u to y. In order to generate B(w) from R(b,w), an axiom of the form ∃P.⊤ ⊑ E
or ∃P.F ⊑ E, for some role name P and concept names E and F , must have been applied during
the chase, where it must be the case that R ⇀T P− and E ⇒T B. The relevant fragment of the
chase graph is shown in Figure 1. So we have ∃S.B on the LHS of an axiom in T , as well as
either ∃P.⊤⊑ E or ∃P.F ⊑ E with E⇒T B, but S and P are not mutually harmless; hence T is not
harmless.

We are finally ready to prove the correctness of Procedure Rewrite in the following lemma
and theorem. For the subsequent proofs and particularly those in Section 6, it is helpful to consider
Procedure Rewrite being applied to an atom, rather than a query. This change is not significant
since each IQ is a query containing a single atom in its body. The only difference is that all variables
are now considered to be unbound. Given an assertion A(a) or R(b,c), we call A(x) or R(y,z),
respectively, the atom associated with the assertion, where x, y and z are arbitrary variables.

Lemma 5. Let K = (T ,A) be a KB, where T is an ELHIℓinh TBox in normal form. Let a, b
and c be individuals or labelled nulls, A be a concept name and R be a role name. There is an
assertion A(a) or R(b,c) in JK if and only if there is an atom A(x) or R(y,z), respectively, which
Procedure Rewrite rewrites to a set of atoms which can be matched to assertions in A, with x
being mapped to a, or y and z being mapped to b and c, respectively.

Proof. (If) Assume there is an atom A(x) or R(y,z), respectively, which Procedure Rewrite
rewrites to a set S of atoms which can be matched using homomorphism π to assertions in A,
with π(x) = a or π(y) = b and π(z) = c, respectively. The proof proceeds by induction on the
number of rule applications taken by Procedure Rewrite to produce S.

The base case of zero rule applications is obvious. So assume that for every concept atom
A(x) or role atom R(y,z) requiring up to i rule applications to rewrite it to a set of atoms matching
assertions in A using a homomorphism π , it is the case that A(π(x)) ∈ JK or R(π(y),π(z)) ∈ JK.
Now consider the case of a concept or role atom requiring i+1 applications.

Assume first that it is the concept atom A(x) which requires i+ 1 rule applications. Let π be
the homomorphism matching atoms in S to assertions in A. The first rule applied must be (a), (b)
or (c). Consider (a), and assume the axiom applied is B ⊑ A, for some concept name B. So A(x)
is rewritten to B(x) by the procedure. B(x) requires i rule applications for its rewriting so, by the
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inductive hypothesis, B(π(x))∈JK. Note that π(x) could be a labelled null. Since the axiom B⊑ A
is in T , clearly we have A(π(x)) ∈ JK.

Case (b) is similar, except that A(x) is rewritten to R(x,y), for some role name R.
In case (c), A(x) is rewritten to R(x,y) and B(y) according to axiom ∃R.B ⊑ A, for some role

name R and concept name B. Note that variable y is shared, so rule (d) cannot be applied to R(x,y)
subsequently. This means that y is retained in applications of rules applied to role atoms. Similarly,
rules applied to concept atoms retain the variable, so y appears in all subsequent sets of atoms.
Hence, π is defined on y and must be some individual inA. Both R(x,y) and B(y) are rewritten using
at most i rule applications so, by the inductive hypothesis, R(π(x),π(y)) ∈ JK and B(π(y)) ∈ JK.
Applying the axiom ∃R.B⊑ A gives us that A(π(x)) ∈ JK, as required.

Now assume that it is the role atom R(y,z) which requires i+1 rule applications. Note that z is
unbound so that rule (d) can be applied. In this case, there is an axiom A⊑ ∃R.⊤ in T and R(y,z) is
rewritten to A(y), and π is not defined on z. By the inductive hypothesis, A(π(y)) ∈ JK. The axiom
A⊑ ∃R.⊤ ensures that R(π(y),c) ∈ JK, where c is a labelled null. The other cases of rules (e) and
(f) are straightforward.

(Only if) Assume there is an assertion A(a) or R(b,c) in JK. The proof proceeds by induction
on the height of the chase graph GK of smallest height for A(a) or R(b,c), respectively. If GK is
of height zero, then A(a) or R(b,c) is in A, and clearly A(x) or R(y,z), respectively, will match the
assertion.

Assume that for all chase graphs of height at most i for assertions A(a) or R(b,c), there is a
rewriting of A(x) or R(y,z), respectively, into a set S of atoms and a homomorphism π which maps
each atom in S to an assertion in A. Now let A(a) be an assertion whose smallest chase graph GK
is of height i+ 1. Assertion A(a) must have been produced by applying rule (iii) or rule (vi). If
rule (iii) was used by applying the axiom B ⊑ A, for some concept name B, then there must be a
chase graph of smallest height i for the assertion B(a). By the inductive hypothesis, the atom B(x)
is rewritten to a set of atoms which can match assertions in A using a homomorphism π such that
π(x) = a. Procedure Rewrite can rewrite A(x) to B(x) using B ⊑ A, and homomorphism π still
provides the matching, giving the required result.

Now assume that rule (vi)(a) was used to produce A(a) by applying axiom ∃R.⊤⊑ A, for some
role name R. Thus, there is a chase graph of height i for producing R(a,b), for some individual or
labelled null b. The result follows using similar reasoning to the above case.

Next assume that rule (vi)(b) was used to produce A(a) by applying axiom ∃R.B⊑ A, for some
role name R and concept name B. Thus, there are chase graphs of height at most i for producing each
of R(a,b) and B(b). Note that, by Lemma 4, b cannot be labelled null. There are homomorphisms
π1 and π2 mapping the rewritten atoms of R(y,z) and B(z), respectively, to assertions in A such that
π1(z) = π2(z) = b. Hence π1 and π2 can be combined into a homomorphism mapping the rewritten
atoms of A(y) to assertions in A.

We next turn to the case of a role assertion R(b,c). This must have been produced by applying
rules (iv), (v) or (vii). The cases of rules (iv) and (v) are straightforward, so let us consider the
case of rule (vii). Assume rule (vii) used the axiom A⊑ ∃R.⊤ to produce R(b,c). Hence, there is a
chase graph of height i for A(b), and c is a labelled null. By the inductive hypothesis, A(x) can be
rewritten to a set of atoms which are matched to assertions inA using a homomorphism π such that
π(x) = b. Now consider the atom R(x,y). Because y is not bound, R(x,y) can be rewritten to A(x),
and π still provides a homomorphism, as required.
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Theorem 2. Let T be an ELHIℓinh TBox in normal form and q a (concept or role) IQ over T . Let
QR be the set of CQs returned by Rewrite(q,T ). Then for each ABox A, q(T ,A) =

⋃
qr∈QR

qr(∅,A).

Proof. Let q be either the role IQ q(x,y)← R(x,y) (the case of q(x,y)← R(y,x) is analogous),
where R is a role name in K, or be the concept IQ q(x)← A(x), where A is a concept name in
K, and QR be the set of CQs returned by Rewrite(q,T ). Lemma 5 shows that the mappings for
the variables x and y when evaluating queries in QR on A correspond exactly to the individuals or
labelled nulls appearing in the respective assertions for R or A in the canonical model for (T ,A).
Clearly, the result also holds when restricted to individuals, i.e., certain answers.

Theorem 2 leads to the following corollary, which shows that a conjunction of the form C1⊓C2
cannot be encoded on the left-hand side of a concept inclusion axiom in T .

Corollary 1. Let T be an ELHIℓinh TBox in normal form, with C1,C2 ∈ A such that T ̸|=C1 ⊑C2
and T ̸|= C2 ⊑C1. Then T cannot encode a concept of the form C1 ⊓C2 on the LHS of a concept
inclusion axiom.

Proof. Suppose that T encodes the axiom C1 ⊓C2 ⊑ C3, for C3 ∈ A. Now consider the concept
IQ q given by q(x) ← C3(x). Since Theorem 2 shows that Procedure Rewrite generates the
perfect rewriting of q, T ̸|=C1 ⊑C2 and T ̸|=C2 ⊑C1, Rewrite(q,T ) must contain the CQ q(x)←
C1(x),C2(x). But this contradicts Lemma 1 which states that each query in Rewrite(q,T ) is a
2SPCQ.

A further corollary is that, in the case of role IQs, the CQ rewriting can be computed in polyno-
mial time by a simple check on sequences of role inclusions in the TBox.

Corollary 2. Let T be an ELHIℓinh TBox in normal form, qR a role IQ of the form q(x,y)← R(x,y)
and qR− a role IQ of the form q(x,y)← R(y,x). Let RT and R−T be the sets of roles such that R′ ∈ RT
if and only if R′⇀T R and R′− ∈ R−T if and only if R′⇀T R−. Then for every ABox A, it holds that

q(T ,A)
R =

⋃
P∈(RT ∪R−T )

q(∅,A)
P and q(T ,A)

R− =
⋃

P∈(RT ∪R−T )

q(∅,A)
P− .

Proof. We know from Proposition 1 that, given two role names R,R′ appearing in an ELHIℓinh TBox
T in normal form, we have that T |= R ⊑ R′ if and only if R ⇀T R′, and T |= R ⊑ R′− if and only
if R ⇀T R′−. Then the claim follows immediately from Theorem 2.

Even though Theorem 2 shows that Procedure Rewrite is correct, for concept IQs the proce-
dure may not terminate, i.e., the set QR of rewritten queries may be infinite. In the next subsection,
we show how a finite set of rewritten queries can be produced if we rewrite concept IQs to 2RPQs
rather than CQs.

5.2 NFA Rewriting of Concept Instance Queries for ELHIℓinh

In this section, we show how to encode rewritings for concept IQs under an ELHIℓinh TBox by
means of a non-deterministic finite-state automaton (NFA); intuitively, the automaton is able to
encode the potentially infinite sequences of rewriting steps executed by Procedure Rewrite. Given
an ELHIℓinh TBox T and a concept IQ q using concept name A in its body, we present next the
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construction of an NFA NFAA,T based on T and A. Each symbol in the alphabet of NFAA,T is
a concept name, a role name or the inverse of a role name. Since the sets of concept names and
role names are disjoint, we can interpret a sequence accepted by the NFA as a complex concept by
inserting existential quantifiers before the role names and inverse role names.

Recall from Lemma 1 that every query produced by Procedure Rewrite is a 2SPCQ. The-
orem 3 below proves that the language accepted by NFAA,T is exactly {path(qrew) | qrew ∈ QR},
where QR is the set of queries returned by Procedure Rewrite for concept IQ q.

Definition 12. Let T be an ELHIℓinh TBox in normal form, Σ be the alphabet P∪A, and A ∈
A be a concept name. The NFA-rewriting of A with respect to T , denoted NFAA,T , is the NFA
(Q,Σ,δ ,SA,F) defined as follows:

(1) states SA, SFA and S⊤ are in Q, SFA and S⊤ are in F , and transition (SA,A,SFA) is in δ ; SA is
the initial state;

(2) for each B ∈ A that appears in at least one concept inclusion axiom of T , states SB and SFB

are in Q, SFB is in F , and transition (SB,B,SFB) is in δ ;

(3) for each concept inclusion axiom ρ ∈ T :

(3.1) if ρ is of the form B⊑C, where B,C ∈ A, the transition (SC,ε,SB) is in δ ;

(3.2) if ρ is of the form B⊑∃R.⊤, where B∈A and R∈R, for each transition (SX ,R,S⊤)∈ δ ,
for some X ∈ A, the transition (SX ,ε,SB) is in δ ;

(3.3) if ρ is of the form ∃R.⊤⊑ B, where B ∈ A and R ∈ R, the transition (SB,R,S⊤) is in δ ;

(3.4) if ρ is the form ∃R.D⊑C, where C,D ∈ A and R ∈ R, the transition (SC,R,SD) is in δ ;

(4.1) for each role inclusion axiom T ⊑ S ∈ T and each transition of the form (SC,S,SB) ∈ δ or
(SC,S−,SB) ∈ δ (where SB could be S⊤), the transition (SC,T,SB) or (SC,T−,SB) is in δ ,
respectively.

(4.2) for each role inclusion axiom T ⊑ S− ∈ T and each transition of the form (SC,S,SB) ∈ δ

or (SC,S−,SB) ∈ δ (where SB could be S⊤), the transition (SC,T−,SB) or (SC,T,SB) is in δ ,
respectively.

(5) there are no other states in Q or transitions in δ .

Example 12. Consider the TBox T defined by the following inclusion axioms in normal form:

∃P.⊤ ⊑ A

∃P.⊤ ⊑ B

∃T.B ⊑ C

∃S.A ⊑ A

∃R.C ⊑ D

D ⊑ ∃P.⊤
V ⊑ T−

where P, R, S, T , V are role names and A, B, C and D are concept names. Consider now the concept
IQ q = q(x)← A(x, ). It is easy to see that Rewrite(q,T ) runs indefinitely, because rewriting
rule (c) can be applied to the atom A(x, ) ad infinitum.

Let us consider the NFA rewriting of A with respect to T . We construct NFAA,T
(shown in Figure 2) as follows: by (2) in Definition 12 we have the transitions
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SA

SFA S⊤

SB

SFB
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SFD

S
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ε
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Figure 2: NFA for Example 12.

(SA,A,SFA),(SB,B,SFB),(SC,C,SFC) and (SD,D,SFD); by (3.3) and the inclusion axioms ∃P.⊤⊑ A
and ∃P.⊤⊑ B, we have the transitions (SA,P,S⊤) and (SB,P,S⊤); by (3.2) and the inclusion axiom
D ⊑ ∃P.⊤, we have the transitions (SA,ε,SD) and (SB,ε,SD); by (3.4) and the inclusion axioms
∃R.C ⊑ D, ∃T.B ⊑C and ∃S.A ⊑ A, we have the transitions (SD,R,SC), (SC,T,SB) and (SA,S,SA);
finally, by (4.2) and the inclusion axiom V ⊑ T− we have the transition (SC,V−,SB).

The language accepted by NFAA,T can be described by the regular expression

S∗( (A|P|D) | ( ( (R(T |V−) )∗ (P|B|D|RC) ) ) ),

where a sequence such as SRV−B corresponds to the complex concept ∃S.∃R.∃V−.B.
It can be verified that each of the infinitely many queries in Rewrite(q,T ) is of the form q(x)←

NFAA,T (x,y). For example, some rewritings of q are:

q(x)← P(x,y)
q(x)← S(x,z1),A(z1,y)
q(x)← S(x,z1),S(z1,z2),P(z2,y)
q(x)← R(x,z1),T (z1,z2),R(z2,z3),C(z3,y)
q(x)← R(x,z1),V (z2,z1),R(z2,z3),C(z3,y)

It is easy to verify that each of these output queries is a 2SPCQ and that each path is in L(NFAA,T ).

We now prove our main theorem for concept instance queries, which states that the set of se-
quences produced by NFAA,T is the same as the set of paths of the queries produced by Proce-
dure Rewrite for the query q(x)← A(x, ).

Theorem 3. Let T be an ELHIℓinh TBox in normal form, and q be the query q(x)← A(x, ), with
A ∈ A. Then L(NFAA,T ) = {path(qrew) | qrew ∈ Rewrite(q,T )}.

Proof. Let QR denote the set of rewritten queries returned by Rewrite(q,T ). We prove that (A) for
each sequence w ∈ L(NFAA,T ), there is a query qrew ∈ QR such that path(qrew) = w, and (B) for
each query qrew ∈ QR, path(qrew) ∈ L(NFAA,T ).

(A) Let w be a sequence in L(NFAA,T ). The proof proceeds by induction on the length |w| of w.
BASE STEP. Let |w| = 1. There are three possibilities for the sequence of transitions from SA

yielding w.

1. There is a transition (SA,A,SFA) and w = A. Clearly, the path of the original query q is equal
to A.
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2. There is a transition (SA,R,S⊤) or (SA,R−,S⊤) and w = R or w = R−, respectively, for some
role name R. In the case of (SA,R,S⊤), the transition could have been added by step (3.3) in
Definition 12, in which case the axiom ∃R.⊤ ⊑ A is in T , and q would have been rewritten
to a query qrew for which path(qrew) = R. Alternatively, the transition could have been added
as a result of a number of applications of steps (4.1) and (4.2) to some original transition
(SA,T,S⊤), for role name T . This is also the case if the transition is (SA,R−,S⊤). Steps (4.1)
and (4.2) mimic the application of rewriting rules (e) and (f), hence there will be a query
qrew ∈ QR for which path(qrew) is R or R−, respectively.

3. There is a sequence s of ε-transitions from state SA to a state SB, for some B ∈ A, followed by
the transition (SB,B,SFB) (since ε-transitions enter only states associated with concept names,
not state S⊤ nor any final state). So w = B. Let one of the transitions in s be t = (SC,ε,SD),
for C,D ∈ A. If t were added to the NFA by step (3.1), then D ⊑ C ∈ T . If t were added
by step (3.2), then there must also be a transition (SC,R,S⊤) (added by step (3.3)), for some
R ∈ R, and axioms D ⊑ ∃R.⊤ and ∃R.⊤ ⊑C are in T . Then the sequence s corresponds to
applying rewriting rules (a), (b) and (d), some number of times, to q, resulting in a query qrew

such that path(qrew) = B.

INDUCTIVE STEP. Now assume that the result holds for all sequences of length k, for some
k ⩾ 1, and consider a sequence w of length k + 1. In the sequence s of transitions that leads to
acceptance of w, there must be some transition whose label is a role name or its inverse (since that
is the only way to generate a sequence of length greater than one). Let t = (SB,R,SC) be the last
such transition in s. Transition t may be followed by a sequence of ε-transitions leading to state
SD, say, followed by the final transition (SD,D,SFD) or (SD,P,S⊤) for some role name or its inverse
P. So w = uRD or w = uRP, where |u| = k− 1. The NFA also has the transition p = (SB,B,SFB).
Following the sequence of transitions s up to but not including t followed by transition p leads to
acceptance of the sequence uB of length k. By the inductive hypothesis, there is a query qrew ∈ QR
with path(qrew) = uB. Transition t must have been added by step (3.4) in Definition 12 as a result
of axiom ∃R.C ⊑ B being in T . Hence, Procedure Rewrite rewrites qrew using rule (c) to a query
q′rew ∈ QR where path(q′rew) = uRC. The ε-transitions followed after transition t correspond to
applying rewrites to q′rew, replacing C in path(q′rew) finally by D or P, as in case (3) above, yielding
a query q′′rew ∈ QR with path(q′′rew) equal to uRD or uRP, as required.

(B) The proof is by induction on the number of rewriting steps of Procedure Rewrite needed
to produce qrew. As before, we denote by Q[i] the set of queries produced after the i-th iteration of
the repeat loop in Procedure Rewrite.

BASE STEP. Q[0] = {q}, where q is q(x)← A(x, ). Step (1) in Definition 12 sets SA to be the
initial state, and step (2) adds the transition (SA,A,SFA); therefore, A ∈ L(NFAA,T ) and the claim
follows.

INDUCTIVE STEP. Suppose that for each q′rew ∈Q[i], for some i⩾ 0, we have that path(q′rew) ∈
L(NFAA,T ), and let qrew ∈ Q[i+1]. From Lemma 1, we know that the body of each query is a
2SPCQ. Query qrew is produced by applying a rewriting rule to a query q′rew ∈ Q[i], based on one of
the following forms of axioms in T :

• B ⊑ A: so body(q′rew) must contain an atom of the form A(x1,x2). By applying rule (a) to
body(q′rew), we obtain the same set of atoms in body(qrew) except with atom B(x1,x2) instead
of atom A(x1,x2). When path(q′rew) is accepted by the NFA, the last transition must be
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(SA,A,SFA) (since q′rew is a 2SPCQ). Steps (3.1) and (1) in Definition 12 ensure that transitions
(SA,ε,SB) and (SB,B,SFB) are also present. Hence, path(qrew) ∈ L(NFAA,T ).

• B ⊑ ∃R.⊤: so body(q′rew) contains an atom of the form R(x1, ). Since the second argument
of R is unbound, R must be the last symbol in path(q′rew). Hence the last transition in the
acceptance of path(q′rew) by the NFA must be (SX ,R,S⊤), for some state SX . By applying
rule (d) to body(q′rew), we obtain the same set of atoms in body(qrew) except with atom
B(x1, ) instead of atom R(x1, ). Then path(qrew) ∈ L(NFAA,T ), since steps (3.2) and (1),
respectively, ensure that transitions (SX ,ε,SB) and (SB,B,SFB) are also present.

• ∃R.⊤⊑ A: so body(q′rew) contains an atom of the form A(x1,x2) (once again as the last atom).
Hence the last transition in the acceptance of path(q′rew) by the NFA must be (SA,A,SFA).
Applying rule (b) to q′rew, we obtain the same set of atoms in body(qrew) except with atom
R(x1, ) instead of atom A(x1,x2). Then path(qrew) ∈ L(NFAA,T ), since step (3.3) ensures
that the transition (SA,R,S⊤) is present.

• ∃R.B⊑ A: so body(q′rew) contains an atom of the form A(x1,x2) (once again as the last atom).
Again we have that the last transition in the acceptance of path(q′rew) by the NFA must be
(SA,A,SFA). Applying rule (c) to q′rew, we obtain the same set of atoms in body(qrew) except
with the pair of atoms R(x0,x1),B(x1,x2) instead of A(x1,x2). Then path(q′rew)∈ L(NFAA,T ),
since steps (3.4) and (1), respectively, ensure that transitions (SA,R,SB) and (SB,B,SFB) are
present.

• R1 ⊑ R2: so body(q′rew) contains an atom of the form R2(xk,xk+1) or R2(xk+1,xk), for some
k ⩾ 1. The acceptance of path(q′rew) by the NFA must traverse a transition (SB,R2,SC) or
(SB,R−2 ,SC), respectively, for some states SB and SC. Applying rule (e) we obtain body(qrew)
from body(q′rew) by replacing R2(xk,xk+1) by R1(xk,xk+1) (respectively R2(xk+1,xk) by
R1(xk+1,xk)). Step (4.1) ensures that the transition (SB,R1,SC) (respectively (SB,R−1 ,SC))
is present, hence path(q′rew) ∈ L(NFAA,T ).

• R1 ⊑ R−2 : so body(q′rew) contains an atom of the form R2(xk,xk+1) or R2(xk+1,xk), for some
k ⩾ 1. The acceptance of path(q′rew) by the NFA must traverse a transition (SB,R2,SC) or
(SB,R−2 ,SC), respectively, for some states SB and SC. Applying rule (f) we obtain body(qrew)
from body(q′rew) by replacing R2(xk,xk+1) by R1(xk+1,xk) (respectively R2(xk+1,xk) by
R1(xk,xk+1)). Step (4.2) ensures that the transition (SB,R−1 ,SC) (respectively (SB,R1,SC))
is present, hence path(q′rew) ∈ L(NFAA,T ).

As suggested above, we can interpret the paths of rewritten queries as complex concepts. Below,
for complex concept B, we use the notation B∈ L(NFAA,T ) to mean that the sequence corresponding
to the complex concept B is in the language denoted by the NFA. The following corollary relates
concept inclusions involving complex concepts on the LHS which are entailed by a KB K= (T ,A)
to satisfaction of queries produced by the NFA-rewriting in the base model IA. This result will be
used in the next section.

Corollary 3. Let T be an ELHIℓinh TBox, A be a concept name, and B be an ELHIℓinh complex
concept (not necessarily in normal form). The following are equivalent:
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1. T |= B⊑ A,

2. B ∈ L(NFAA,T ), and

3. for each ABox A and individual a ∈ ind(A) such that IA |= B(a), it is the case that IA |=
q(a)← NFAA,T (a, ), where here we use NFAA,T as shorthand for the regular expression
denoted by NFAA,T .

Proof. We prove that (1) if and only if (3), and (2) if and only if (3).
From Theorems 2 and 3 we have that q(x)← NFAA,T (x, ) is a perfect rewriting of q(x)←

A(x, ) with respect to T . Therefore, for each ABox A and for each individual a, it is the case that
(T ,A) |= q(a)← A(a, ) if and only if IA |= q(a)← NFAA,T (a, ).

(1)⇒ (3) If T |=B⊑A, then for each ABoxA and for each individual a we have that IA |=B(a)
implies (T ,A) |= q(a)← A(a, ) and therefore IA |= q(a)← NFAA,T (a, ).

(3) ⇒ (1) If for each ABox A and each individual a ∈ ind(A) such that IA |= B(a), we have
that IA |= q(a)← NFAA,T (a, ), this implies that T |= B⊑ A.

(2)⇒ (3) If B ∈ L(NFAA,T ), then B corresponds to a complex concept. Let A be an ABox and
a be an individual in ind(A) such that IA |= B(a). Then clearly IA |= q(a)← NFAA,T (a, ) since
B ∈ L(NFAA,T ).

(3)⇒ (2) Assume that, for each ABox A and each individual a ∈ ind(A) such that IA |= B(a),
we have that IA |= q(a)← NFAA,T (a, ). Each sequence in L(NFAA,T ) corresponds to a distinct
complex concept, so it must be the case that B ∈ L(NFAA,T ).

6. Rewriting CQs into UC2RPQs under ELHIℓinh

In this section, we build on the rewriting approaches for concept and role IQs developed in the pre-
vious section in order to rewrite CQs expressed with respect to an ELHIℓinh TBox into UC2RPQs.
The approach we take follows that of (Kikot et al., 2012; Kontchakov & Zakharyaschev, 2014), who
investigate the problem of rewriting CQs under DL-LiteR (or QL) and divide the problem into two
parts:

Firstly, they deal with those TBox axioms that do not use existential quantification on the right-
hand side, i.e., axioms that do not produce any labelled nulls when expanded. They term the set of
such axioms the flat part of the TBox. Secondly, they present a tree-witness approach in order to
generate rewritings for CQs under full QL. Tree witnesses capture those assertions that may produce
labelled nulls.

In our case, the flat part of the TBox allows axioms with qualified existential quantification on
the left-hand side of concept inclusions, so we make use of the NFA-based rewriting defined in Sec-
tion 5. We describe our method, which rewrites a CQ to a C2RPQ, in Section 6.1. In Section 6.2, we
then show how the rewriting of the flat part of the TBox can be combined with the tree-rewriting ap-
proach of (Kikot et al., 2012; Kontchakov & Zakharyaschev, 2014) to generate the perfect rewriting
of a CQ into a UC2RPQ.

6.1 Rewriting for Flat ELHIℓinh

We first show how to rewrite CQs into C2RPQs under the special case of flat ELHIℓinh TBoxes,
i.e., those that do not contain existential quantifiers on the right-hand side of concept inclusions. In
other words, a flat ELHIℓinh TBox in normal form can only contain concept and role inclusions of
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the form A1 ⊑ A2, ∃R.D⊑ A, R1 ⊑ R2 or R1 ⊑ R−2 , for concept names A,A1,A2, role names R1,R2,
and D a concept name or ⊤.

Let K = (T ,A) be a KB, with T a flat ELHIℓinh TBox, JK be the canonical model for K, q
be a conjunctive query, and a a tuple of individuals. Then K |= q(a) if and only if q(a) is true in
JK. Since T is flat, JK contains no labelled nulls, and so, from the definition of JK (Definition 3),
Theorem 2 and Corollary 3, we have that:

• JK |= A(a) if and only if IA |= q(a)← B(a, ) and B ∈ L(NFAA,T ), for some concept or role
name B,

• JK |= P(a,b) if and only if (i) IA |= R(a,b) and T |= R ⊑ P, or (ii) IA |= R(b,a) and T |=
R⊑ P−, for some role name R.

Following from this observation, we are now able to define a C2RPQ qT -ext such that, for any CQ
q and any flat ELHIℓinh TBox T , qT -ext is the perfect rewriting of q with respect to T . (Here,
the subscript T -ext follows the notation of (Kontchakov & Zakharyaschev, 2014) and indicates the
extension of the atoms of q according to the TBox T .)

Definition 13. Given a CQ q and an ELHIℓinh TBox T , we construct a C2RPQ qT -ext by replacing
each atom A(u1,u2) in q, where A is a concept name, by AT -ext(u1,u2), and each atom P(u1,u2) in
q, where P is a role name, by PT -ext(u1,u2). Formula AT -ext(u1,u2) is defined as follows:

AT -ext(u1,u2) = α(u1,u2),

where α is a regular expression denoting L(NFAA,T ). For PT -ext(u1,u2), we first define

R= {R | T |= R⊑ P} ∪ {R− | T |= R⊑ P−}.

Now ifR= {R1, . . . ,Rn}, where each Ri is a role name or inverse role name, then

PT -ext(u1,u2) = (R1 | · · · | Rn)(u1,u2).

Example 13. Consider the flat ELHIℓinh TBox T comprising the axioms

∃hasRelative.Person ⊑ Person

hasParent ⊑ hasRelative

and the CQ q given by q(x,y)← Person(x,z),hasRelative(x,y). Using Definition 13, we construct
qT -ext as follows:

q(x,y)← ((hasRelative|hasParent)∗Person)(x,z),(hasRelative|hasParent)(x,y)

Proposition 3. For each ELHIℓinh KB K = (T ,A), concept name A, role name P, and individual
names a and b we have:

• JK |= A(a) if and only if IA |= q(a)← AT -ext(a, ),

• JK |= P(a,b) if and only if IA |= q(a)← PT -ext(a,b).
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Proof. From Corollary 3, we have that q()← AT -ext(a, ) is the perfect rewriting of q()← A(a)
with respect to T . The fact that JK |= P(a,b) if and only if q()← PT -ext(a,b) follows from the
observation that the only way to infer P(a,b), where a and b are individuals inA, using an ELHIℓinh
TBox is through the closure of role inclusion axioms of the form R1 ⊑ R2 and R1 ⊑ R−2 . The claim
follows.

The next proposition shows that, for any CQ q and any flat ELHIℓinh TBox T , qT -ext is a C2RPQ
rewriting of q with respect to T .

Proposition 4. For any CQ q and any flat ELHIℓinh TBox T , qT -ext is the C2RPQ rewriting of q
with respect to T .

Proof. Since T is flat, no axioms contain existential quantifiers on the right-hand side, so no labelled
nulls appear during the chase procedure. Therefore we can construct the perfect rewriting of q by
splitting q into its atoms, generating the perfect rewriting of the single atomic queries and taking the
conjunction of the resulting set of atoms. More specifically, we can substitute every atom A(z1,z2)
in q with AT -ext(z1,z2) and every atom P(z1,z2) in q with PT -ext(z1,z2) which gives rise to qT -ext.
Since each AT -ext(z1,z2) and each PT -ext(z1,z2) is a 2RPQ, qT -ext is a C2RPQ.

6.2 Rewriting for Full ELHIℓinh

In this section, we show how the tree-witness approach of (Kikot et al., 2012; Kontchakov & Za-
kharyaschev, 2014) can be applied to generate rewritings for full ELHIℓinh TBoxes. Tree witnesses
capture those assertions in a KB canonical model that involve labelled nulls. Since the axioms
that lead to the creation of labelled nulls are essentially the same in QL (as used in (Kikot et al.,
2012; Kontchakov & Zakharyaschev, 2014)) and ELHIℓinh , it turns out that the structure of the tree
witnesses is the same for both languages.

Since we will be comparing our results closely to those regarding QL in (Kontchakov & Za-
kharyaschev, 2014), we now introduce QL and relate it to ELHIℓinh . Concept and role inclusions in
QL are of the form

B⊑C and R1 ⊑ R2

where R1 and R2 are roles (role names or their inverses) and B and C are concepts defined by the
following grammar:

B ::= A | ∃R.⊤
C ::= A | ∃R.⊤ | ∃R.C

where A is a concept name and R is a role. As we see above, unlike ELHIℓinh , QL allows only
unqualified existential quantification on the LHS of concept inclusion axioms. The normal form for
QL used in (Kontchakov & Zakharyaschev, 2014), which we will refer to here as KZ normal form,
requires that each concept inclusion is of the form

A′ ⊑ A, ∃R.⊤⊑ A or A⊑ ∃R.D

where R is a role, A and A′ are concept names and D is either a concept name or ⊤.
We see that KZ normal form allows for axioms of the form A⊑ ∃R.D, as well as use of inverse

role names on the LHS of axioms. In contrast, our normal form for ELHIℓinh — presented in
Section 3 — introduces new role names and axioms to ensure that only unqualified existential

880



EFFICIENT ONTOLOGY-MEDIATED QUERY ANSWERING

quantification appears on the RHS of concept inclusion axioms, and that inverse role names appear
only on the RHS of role inclusion axioms.

Let T be a QL TBox in KZ normal form. For each axiom of the form A⊑∃R.D∈T , Kontchakov
and Zakharyaschev introduce the symbol w∃R.D, representing a witness to the application of rule (vii)
to the axiom during the chase. These witnesses are used in the construction of labelled nulls needed
in the canonical model of T and a given ABox. In order to model how an individual in the ABox
gives rise to a witness, and how one witness gives rise to another, they define a generating relation
⇝T ,A on the set of witnesses together with ind(A) by setting:

1. a⇝T ,A w∃R.D if a ∈ ind(A), IA |= B(a) and T |= B⊑ ∃R.D

2. w∃S.B⇝T ,A w∃R.D if T |= ∃S−.⊤⊑ ∃R.D or T |= B⊑ ∃R.D.

Henceforth we will assume that QL TBoxes are also in our normal form, defined in Section 3,
and we will point out the modifications to the definitions from (Kontchakov & Zakharyaschev, 2014)
that are required as a result. If we assume that a QL TBox is in our normal form, the definitions of
the generating relation become:

1. a⇝T ,A w∃R if a ∈ ind(A), IA |= B(a) and T |= B⊑ ∃R.⊤

2. w∃S⇝T ,A w∃R if T |= ∃S−.⊤⊑ ∃R.⊤ .

Note that we have abbreviated a witness of the form w∃R.⊤ to w∃R. We can drop the condition T |=
B⊑ ∃R.D from the original case (2) because, when converting to our normal form, new role names
representing ∃S.B and ∃R.D, say SB and RD respectively, will be introduced, and in the converted
TBox T ′, we will have T ′ |= ∃S−B .⊤⊑ B and T ′ |= ∃R−D .⊤⊑D. So if we had T |= B⊑ ∃R.D in the
original TBox, we will have T ′ |= ∃S−B .⊤⊑ ∃RD.⊤ in the converted TBox, which is covered by the
new case (2).

Kontchakov and Zakharyaschev then compose individual witnesses into paths that are used
to represent labelled nulls. A path σ on the generating relation ⇝T ,A is a finite concatenation
aw∃R1 . . .w∃Rn , n⩾ 0, such that a ∈ ind(A) and, if n > 0, then a⇝T ,A w∃R1 and w∃Ri ⇝T ,A w∃Ri+1 ,
for 1⩽ i < n. Thus, a path of the form σw∃R denotes the fresh labelled null introduced by applying
(vii) to some A ⊑ ∃R.⊤ on (the individual or labelled null represented by) σ . These paths are then
used to construct their canonical model, denoted by CT ,A, for the KB K= (T ,A) (in what follows,
we will differentiate between CT ,A and the canonical model JK constructed using our technique —
see Definitions 15 and 16).

Because ELHIℓinh allows for qualified existential quantification on the LHS of axioms, we can-
not use precisely the same approach as Kontchakov and Zakharyaschev, as demonstrated in the
following example.

Example 14. Let K = (T ,A) be a ELHIℓinh KB, with T comprising the axioms

A ⊑ ∃R.⊤
R ⊑ S−

∃S.B ⊑ C

C ⊑ ∃U.⊤

and ABox A containing only the assertions A(a), A(b) and B(a). Then the labelled nulls aw∃R and
bw∃R are generated when applying the first axiom to A(a) and A(b), respectively. Hence, (a,aw∃R)
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and (b,bw∃R) are in RJK . The second axiom adds (aw∃R,a) and (bw∃R,b) to SJK . Because of
qualified existential quantification in the third axiom, we have to check that the second component
of S also occurs in B. Hence, aw∃R can be added to CJK by the third axiom but bw∃R cannot, because
B(a) is in A but B(b) is not.

Now consider the axiom C ⊑ ∃U.⊤. With aw∃R being in CJK , this results in (aw∃R,aw∃Rw∃U)
being added to UJK . But the same is not true for bw∃R, so rule (2) from the (modified) generating
relation is not correct in our setting because it is not always the case that w∃R⇝T ,A w∃U .

As shown in the above example, we cannot use a generating relation to produce paths repre-
senting labelled nulls in ELHIℓinh KBs. Instead, we will generate the paths directly, and call them
w-paths, for “witness paths”.

Definition 14. Let K = (T ,A) be an ELHIℓinh KB. A w-path σ for K is a sequence of one of the
following forms:

1. aw∃R, where a ∈ ind(A), A⊑ ∃R.⊤ ∈ T , and for some B ∈ L(NFAA,T ), IA |= B(a), or

2. σw∃S, where σ = a · · ·w∃R is a w-path such that |σ |⩾ 2, A⊑ ∃S.⊤ ∈ T , and either

(a) R− ∈ L(NFAA,T ), or

(b) |σ |= 2, and, for some concept name B, R−B ∈ L(NFAA,T ) and IA |= B(a).

Rule (2)(a) in the above definition captures the case of unqualified existential quantification on
the LHS of axioms, while rule (2)(b) captures the case of qualified existential quantification, as
demonstrated in the following example.

Example 15. Consider again the TBox T and ABoxA in Example 14. The w-paths aw∃R and bw∃R
are produced by rule (1) in Definition 14 because L(NFAA,T ) = {A} and {A(a),A(b)} ⊆ A.

Now consider w-paths produced by adding the witness w∃U using the axiom C ⊑ ∃U.⊤.
L(NFAC,T ) = {C,SB,R−B}. Since there are no assertions in A for any of the (complex) concepts
corresponding to the sequences in L(NFAC,T ), rule (1) produces nothing. Rule (2)(a) does not ap-
ply because R− ̸∈ L(NFAC,T ). Rule (2)(b) applies to both aw∃R and bw∃R because they are each
of length two and R−B ∈ L(NFAC,T ). However, only the w-path aw∃Rw∃U is generated because
IA |= B(a) while IA ̸|= B(b).

The reason that the sequences produced by rule (2)(b) are limited to length three is as follows.
Assume we add the following three axioms to those of T in Example 14:

U ⊑ V−

∃V.D ⊑ E

E ⊑ ∃W.⊤

Starting from the w-path aw∃Rw∃U , it seems we should be able to generate the w-path aw∃Rw∃U w∃W
in certain circumstances. That would require (aw∃Rw∃U ,aw∃R) being in VJK and aw∃R being in
DJK . However, this is impossible because Lemma 4 proved that no shared labelled nulls can appear
in any chase graph for an ELHIℓinh KB. So the maximum length of any w-path in which qualified
existential quantification is used in the final step of generation is 3.

The following proposition shows that each w-path corresponds to a labelled null introduced
during the chase procedure according to Definition 3 and vice versa.
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Proposition 5. Let K = (A,T ) be an ELHIℓinh KB, with T in normal form, and A⊑ ∃R.⊤ ∈ T . A
labelled null is introduced by the chase procedure using rule (vii) on A⊑ ∃R.⊤ if and only if there
is a w-path σw∃R.

Proof. (Only if) Assume that a labelled null is introduced by the chase procedure using rule (vii)
on A ⊑ ∃R.⊤. The proof proceeds by induction on the number of applications of rule (vii). If it is
the first application, then no labelled nulls have been generated yet and so the rule must be applied
to some assertion A(a) such that T |= B⊑ A and IA |= B(a), where a ∈ ind(A). From Corollary 3,
we know that B ∈ L(NFAA,T ), so rule (1) in Definition 14 applies and we have the w-path aw∃R.

Assume the result holds for i or fewer applications and let this be application number i+1. If the
rule is applied to an assertion involving an individual, this is similar to the base case. So assume that
the rule is applied to A(d), where d is a labelled null. Labelled null d must have been produced by an
application of rule (vii) to an axiom of the form B⊑∃S.⊤. By the inductive hypothesis, there is a w-
path σw∃S corresponding to labelled null d. For JK |= A(d), we must have either (i) T |= ∃S− ⊑ A
or (ii) T |= ∃S−.C ⊑ A, for some concept C such that IA |=C(c), for some c ∈ ind(A). Note that c
cannot be a labelled null since, if it were, it would be shared, contradicting Lemma 4.

In case (i), we have S− ∈ L(NFAA,T ) by Corollary 3. Hence, by rule 2(a) in Definition 14, the
w-path σw∃Sw∃R is generated, corresponding to the labelled null introduced by applying rule (vii)
to A⊑ ∃R.⊤.

In case (ii), we have S−C ∈ L(NFAA,T ) by Corollary 3. Hence, rule 2(b) in Definition 14 applies
and the w-path σw∃Sw∃R is once again generated, corresponding to the labelled null introduced by
applying rule (vii) to A⊑ ∃R.⊤.

(If) Conversely, assume that there is a w-path σw∃R. The proof is by induction on the length
of the w-path. Assume σ is of length 1, i.e., σ is some a ∈ ind(A). Hence, aw∃R must have been
generated by rule (1) in Definition 14. So we know that IA |= B(a) and B ∈ L(NFAA,T ), for some
B. By Corollary 3, we have T |= B ⊑ A; hence, rule (vii) will be applied to A ⊑ ∃R.⊤ and A(a),
generating a labelled null.

Assume the result holds for w-paths of length i, for some i ⩾ 2, and consider a w-path σw∃R
of length i+ 1. Now rule (2) in Definition 14 applies. By the inductive hypothesis a labelled null
d corresponding to σ is generated. Let σ = a · · ·w∃S. Assume first that the w-path was generated
by rule (2)(a). So we have that S− ∈ L(NFAA,T ). By Corollary 3, we know that T |= ∃S− ⊑ A; so
JK |= A(d) and a labelled null will be generated by applying rule (vii) of the chase procedure to
A⊑ ∃R.⊤ and A(d).

Now assume that the w-path was generated by rule (2)(b). Therefore, σ = aw∃S and S−B ∈
L(NFAA,T ), for some concept name B such that IA |= B(a). Recall that the labelled null d cor-
responds to σ . By Corollary 3, we know that T |= ∃S−B ⊑ A; hence IK |= S(a,d) and therefore
IK |= A(d). We conclude that a labelled null will be generated by applying rule (vii) of the chase
procedure to A⊑ ∃R.⊤ and A(d).

Given KB K= (T ,A), we now use the labelled nulls represented by w-paths for K to construct
our canonical model for K.

Definition 15. Let K = (T ,A) be an ELHIℓinh KB, and let ∆K denote the set of all w-paths. The
canonical model JK is defined as follows (note that B below denotes a complex concept, while P
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denotes a role name):

aJK = a, for a ∈ ind(A)
AJK = {a ∈ ind(A) | B ∈ L(NFAA,T ) and IA |= B(a)} ∪

{σw∃R | σw∃R ∈ ∆
K and R− ∈ L(NFAA,T )} ∪

{aw∃R | aw∃R ∈ ∆
K and R−B ∈ L(NFAA,T ) and IA |= B(a)}, for concept name A

PJK = {(a,b) | IA |= R(a,b) and T |= R⊑ P} ∪
{(b,a) | IA |= R(a,b) and T |= R⊑ P−} ∪
{(σ ,σw∃R) | σw∃R ∈ ∆

K and T |= R⊑ P} ∪
{(σw∃R,σ) | σw∃R ∈ ∆

K and T |= R⊑ P−}, for role name P.

In the following theorem, we show that JK is indeed a canonical model for K = (T ,A).

Theorem 4. Let K = (T ,A) be an ELHIℓinh KB, with T in normal form. The model JK of Defini-
tion 15 is isomorphic to the model produced by the chase of K (Definition 3).

Proof. Corollary 3 proves that T |= B ⊑ A if and only if B ∈ L(NFAA,T ). Hence, an individual a
is added to AIk , for some k, by rule (iii) or rule (vi) in Definition 3 if and only if IA |= B(a) and
T |= B⊑ A which matches the first set in the definition of AJK in Definition 15.

Proposition 5 proves that a labelled null d′ is introduced by the chase using rule (vii) if and
only if there is a w-path σw∃R, where role name R is existentially qualified on the RHS of an
axiom. Hence, the labelled nulls of the chase and the w-paths of Definition 14 are in one-to-one
correspondence. Rule (2) in Definition 14 captures the two circumstances in which a w-path can
appear in the interpretation of a concept name A. These circumstances match the definitions of the
two sets involving w-paths in the definition of AJK in Definition 15.

For a role name P, a pair (d,d′) is added to PIk , for some k, by one of rules (iv), (v) or (vii). If d
and d′ are both individuals, then it must be the case that, for some role name R, IA |= R(d,d′) and
T |= R ⊑ P, or IA |= R(d′,d) and T |= R ⊑ P−. These two cases match the definitions of the first
two sets in the definition of PJK in Definition 15.

Now assume that at least one of d and d′ is a labelled null. If only one of d or d′ is a labelled
null (while the other is an individual), then let j ( j < k) be the chase iteration at which the labelled
null was introduced by rule (vii). If both d and d′ are labelled nulls, then let j ( j < k) be the greater
of the two chase iterations in which d and d′ were introduced by rule (vii). Assume in all cases that
rule (vii) was applied to an axiom with ∃R.⊤ on the RHS, for some role name R. There are two
cases to consider. (1) If d is an individual and d′ a labelled null or both are labelled nulls and d′

was introduced at iteration j, then (d,d′) must have been added to RI j by the chase. (2) If, instead,
d′ is an individual and d a labelled null or both are labelled nulls and d was introduced at iteration
j, then (d′,d) must have been added to RI j by the chase. In order for the pair (d,d′) to be added
to PIk , it must be that case (1) applies and T |= R ⊑ P, or that case (2) applies and T |= R ⊑ P−.
From Proposition 5, we know that in case (1) there exists a w-path or individual σ corresponding
to d and a w-path σw∃R corresponding to d′, or in case (2) there exists a w-path or individual σ

corresponding to d′ and a w-path σw∃R corresponding to d. Hence, analogous pairs to (d,d′) or
(d′,d) are added to PJK by the last two sets in the union of sets for PJK in Definition 15.

We conclude that JK is isomorphic to the model produced by the chase, and is hence a canonical
model for K.
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Below we prove that, ifK is a QL KB, then the canonical model JK defined above is identical to
the canonical model CT ,A based on⇝T ,A-paths defined in (Kontchakov & Zakharyaschev, 2014).
Since we assume that K is expressed in the normal form of Section 3, we give next the definition of
CT ,A modified to take account of our normal form.

Definition 16. Let K = (T ,A) be a QL KB in our normal form, and let ∆CT ,A denote the set of all
⇝T ,A-paths. The KZ canonical model CT ,A is defined as follows:

aCT ,A = a, for a ∈ ind(A)
ACT ,A = {a ∈ ind(A) | T |= B⊑ A and IA |= B(a)}∪

{σw∃R | T |= ∃R− ⊑ A}, for concept name A

PCT ,A = {(a,b) | IA |= R(a,b) and T |= R⊑ P} ∪
{(b,a) | IA |= R(a,b) and T |= R⊑ P−} ∪
{(σw∃R,σ) | tail(σ)⇝T ,A w∃R,T |= R⊑ P−} ∪
{(σ ,σw∃R) | tail(σ)⇝T ,A w∃R,T |= R⊑ P}, for role name P.

Proposition 6. If K = (T ,A) is a QL KB in our normal form, then

1. aJK = aCT ,A , for each a ∈ ind(A),

2. ∆K = ∆CT ,A ,

3. AJK = ACT ,A , for each concept name A, and

4. PJK = PCT ,A , for each role name P.

Proof. The fact that (1) is true is trivial.
For (2), note that, since T is a QL TBox, only unqualified existential quantification occurs on

the LHS of any axiom in T . Hence, for each concept name A, each sequence in L(NFAA,T ) is
of length one, which means that rule (2)(b) in Definition 14 is not used in constructing w-paths.
Clearly, for individual a, a ∈ ∆K if and only if a ∈ ∆CT ,A . So we next prove that σw∃R ∈ ∆K if and
only if σw∃R ∈ ∆CT ,A .

(Only if) Assume that σw∃R ∈ ∆K. The proof proceeds by induction on the length of σw∃R. The
base case corresponds to σ being a, for some a ∈ ind(A). From rule (1) in Definition 14, we have
that A⊑ ∃R.⊤∈ T , and for some B ∈ L(NFAA,T ), IA |= B(a). Corollary 3 tells us that T |= B⊑ A,
and hence T |= B ⊑ ∃R.⊤. From case (1) of the generating relation, we have a⇝T ,A w∃R, and
therefore σw∃R ∈ ∆CT ,A .

Assume that for each path σ of length i, for some i⩾ 2, σ ∈ ∆K implies that σ ∈ ∆CT ,A , and let
σw∃S ∈ ∆K. So σw∃S must have been generated by rule (2)(a), where σ = a · · ·w∃R, A⊑ ∃S.⊤∈ T ,
and R− ∈ L(NFAA,T ). Hence, by Corollary 3, we have that T |= R− ⊑ ∃S.⊤. Rule (2) of the
generating relation gives us that w∃R ⇝T ,A w∃S. By the inductive hypothesis, σ = a · · ·w∃R is in
∆CT ,A ; hence, σw∃S ∈ ∆CT ,A .

(If) Now assume that σw∃R ∈ ∆CT ,A . The proof again proceeds by induction on the length of
σw∃R. The base case corresponds to σ being a, for some a ∈ ind(A). This path must have been
generated using case (1) of the generating relation; hence, for some concept B, we have IA |= B(a)
and T |= B⊑ ∃R.⊤. Therefore, there must be some concept name A (possibly equal to B) such that
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A ⊑ ∃R.⊤ ∈ T and T |= B ⊑ A. By Corollary 3, we know that B ∈ L(NFAA,T ). Hence, aw∃R is
generated by rule (1) of Definition 14.

Assume that for each path σ of length i, for some i ⩾ 2, σ ∈ ∆CT ,A implies that σ ∈ ∆K, and
let σw∃S ∈ ∆CT ,A . So σ = a · · ·w∃R, for some role name R, and σw∃S must have been generated
by applying rule (2) of the generating relation, so we know that T |= ∃R−.⊤ ⊑ ∃S.⊤. Therefore,
there must be some concept name A such that A⊑ ∃S.⊤ ∈ T and T |= R− ⊑ A. By Corollary 3, we
know that R− ∈ L(NFAA,T ). By the inductive hypothesis, σ is in ∆K; hence, σw∃S is generated by
rule(2)(a) of Definition 14.

Now consider claim (3), that AJK = ACT ,A , for each concept name A. Let A be a concept name
A and a ∈ ind(A). Considering the sets of individuals specified for AJK and ACT ,A in Definitions 15
and 16, respectively, Corollary 3 tells us that T |= B ⊑ A if and only if B ∈ L(NFAA,T ). Hence,
a ∈ ACT ,A if and only if a ∈ AJK .

The set of paths in AJK is constructed using only the first of the two sets in Definition 15 relating
to paths, since, as noted earlier in the proof, each sequence in L(NFAA,T ) is of length one. Once
again, Corollary 3 tells us that T |= R− ⊑ A if and only if R− ∈ L(NFAA,T ). This, along with the
fact that ∆K = ∆CT ,A , allows us to conclude that, for path σ , σ ∈ ACT ,A if and only if σ ∈ AJK

Claim (4), namely PJK = PCT ,A , follows from the respective definitions and the fact that ∆K =
∆CT ,A .

Given the above proposition and also for easier comparison with their work, we will now switch
to using the notation of (Kontchakov & Zakharyaschev, 2014) for our canonical model of K =
(T ,A), where T is an ELHIℓinh TBox; that is, we use CT ,A rather than JK, even though our
canonical model is still defined as in Definition 15.

Let T be an ELHIℓinh TBox and A ⊑ ∃R.⊤ an axiom in T . For an arbitrary individual name
a, we define the ∃R-generated T -tree on a, denoted by C∃RT (a), as the restriction of the canonical
model of the KB (T ,{∃R(a)}) to the domain consisting of a and the labelled nulls with prefix
aw∃R (Kontchakov & Zakharyaschev, 2014). Three such trees are shown by the light grey areas
with dashed outlines in Figure 3. Each tree is rooted at an individual (a or b in the figure), with the
remaining nodes in each tree being labelled nulls. Nodes are labelled with concept names, where
known. The (directed) edges are labelled with role names. There is an edge labelled P from node u
to node v if (u,v) is in the canonical model, as defined in Definitions 15 or 16.

Example 16. Consider the QL TBox T with the following axioms (adapted from (Kontchakov &
Zakharyaschev, 2014)):

A ⊑ ∃R.⊤
R ⊑ U−

∃U.⊤ ⊑ D

D ⊑ ∃P1.⊤
D ⊑ ∃P2.⊤
B ⊑ ∃S.⊤

Let the ABox A contain A(a), A(b), B(b), P1(a,b) and P2(b,c). The canonical model of (T ,A)
is shown in Figure 3. The individual a in this canonical model has a single tree C∃RT (a). This tree has
an edge from a to aw∃R labelled R since (a,aw∃R) is in the extension of R in the canonical model.
The edge in the reverse direction is labelled U , because of the second axiom above. The third axiom
results in aw∃R being in the extension of D, so the node aw∃R is labelled D. The labelled nulls
aw∃Rw∃P1 and aw∃Rw∃P2 are generated by the two axioms with D on the LHS.
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A

aw∃Rw∃P1 aw∃Rw∃P2

D aw∃R

A
a

R U

P1 P2

C∃RT (a)
bw∃Rw∃P1 bw∃Rw∃P2

D bw∃R

A

b

B

R U

P1 P2

C∃RT (b)

bw∃S

S

C∃ST (b)

P1

c

P2

Figure 3: The canonical model CT ,A from Example 16.

The individual b has two trees, C∃RT (b) and C∃ST (b), which intersect only at their common root b.
The second tree results from B(b) being in A and the axiom B⊑ ∃S.⊤.

The “join” of all the ∃R-generated T -trees on a, for each ∃R.⊤ appearing on the RHS of an
axiom and each individual a, is called the anonymous part of the canonical model (Kontchakov &
Zakharyaschev, 2014). The tree-witness rewriting approach finds all ways in which atoms in a CQ
can be mapped to the anonymous part of the canonical model; hence, we need to compare the trees
generated by an ELHIℓinh TBox to those generated by a QL TBox. We present an example below
before characterising the relationship. In what follows, given an ELHIℓinh TBox T , we call the
result of replacing each axiom of the form ∃R.A ⊑ B by ∃R.⊤ ⊑ B the QL TBox corresponding to
T , denoted TQL.

Example 17. Let T be the ELHIℓinh TBox used in Example 15, comprising the axioms:

A ⊑ ∃R.⊤
R ⊑ S−

∃S.B ⊑ C

C ⊑ ∃U.⊤
U ⊑ V−

∃V.D ⊑ E

E ⊑ ∃W.⊤

Assume, as before, that ABox A contains only the assertions A(a), A(b) and B(a). TBox TQL is
identical to T , except that B and D are replaced by ⊤ in the third and sixth axioms, respectively.
The trees C∃RTQL

(a) and C∃RTQL
(b) are shown in Figure 4. Removing the lighter nodes, labels and edges

yields the trees C∃RT (a) and C∃RT (b). In other words, removing the node labelled aw∃Rw∃U w∃W , the
edge labelled W and the label E from the node labelled aw∃Rw∃U in C∃RTQL

(a) yields C∃RT (a); removing
the nodes labelled bw∃Rw∃U w∃W and bw∃Rw∃U , the edges labelled W , U and V , and the label C from
the node labelled bw∃R in C∃RTQL

(b) yields C∃RT (b).
For aw∃R to be labelled with C in C∃RT (a) requires that (T ,A) |= B(a); hence, bw∃R cannot be

labelled with C in C∃RT (b). The same restriction does not apply in C∃RTQL
(a) and C∃RTQL

(b); hence, both
aw∃R and bw∃R are labelled with C. For aw∃Rw∃U to be labelled with E in C∃RT (a) would require that
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aw∃Rw∃U w∃W

E aw∃Rw∃U

C aw∃R

A
aB

R S

U V

W

C∃RTQL
(a)

bw∃Rw∃U w∃W

E bw∃Rw∃U

C bw∃R

A
b

R S

U V

W

C∃RTQL
(b)

Figure 4: Trees C∃RTQL
(a) and C∃RTQL

(b).

(T ,A) |= D(aw∃R). As pointed out in Example 15, this cannot be the case for an ELHIℓinh TBox
because aw∃R would then be a shared labelled null.

In the following proposition, we use the notion of a T -tree being a sub-tree of a TQL-tree. We
say that tree C∃RT (a) is a sub-tree of tree C∃RTQL

(a), denoted C∃RT (a) ⊆ C∃RTQL
(a), if each node and edge

in C∃RT (a) appears in C∃RTQL
(a), and each label on each node u and each edge (v,w) in C∃RT (a) appears

on node u and edge (v,w), respectively, in C∃RTQL
(a).

Proposition 7. Let (T ,A) be an ELHIℓinh KB, with T in normal form, and TQL be the QL TBox
corresponding to T . For each role name R and individual a, C∃RT (a)⊆ C∃RTQL

(a).

Proof. LetK= (T ,A) be an ELHIℓinh KB and TQL be the QL TBox corresponding to T . Let C∃RT (a)
and C∃RTQL

(a) be the ∃R-generated T -tree on a and the ∃R-generated TQL-trees on a, respectively, for
role name R and individual a. The proof is by contradiction, considering (i) node labels, (ii) nodes,
and (iii) edges.

(i) Assume that node u appears in both C∃RT (a) and C∃RTQL
(a), and has label A in C∃RT (a) but not in

C∃RTQL
(a). If u is the root, then, by Corollary 3, it is labelled with each B such that T |= B ⊑ ∃R.⊤.

Clearly, T |= B⊑ ∃R.⊤ if and only if TQL |= B⊑ ∃R.⊤, so u cannot be the root.
Node u must therefore be of the form σw∃S, with an edge to u labelled with S from the node

σ . This means that σw∃R ∈ ACT ,A . From Definition 15 we have either (a) R− ∈ L(NFAA,T ), or
(b) R−ρ ∈ L(NFAA,T ) and IA |= ρ(a), for some non-empty ρ . Corollary 3 specifies that either
(a) (T ,A) |= ∃R−.⊤⊑ A, or (b) (T ,A) |= ∃R−.ρ ⊑ A. For TQL, only case (a) applies. Definition 16
specifies that aw∃R ∈ ACT ,A , so aw∃R will be labelled with A in C∃RTQL

(a), a contradiction.
(ii) Assume that node u in C∃RT (a) is a node of smallest distance from the root which does not

also appear in C∃RTQL
(a). Clearly, u cannot be the root node, so it must be of the form σw∃S, with an
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edge to u labelled with S from the node σ . The edge (σ ,σw∃S) can only be present if A⊑∃S.⊤∈T ,
for some A and node σ is labelled with A in C∃RT (a). By assumption, node σ appears in C∃RTQL

(a).
From (i), we know it must be labelled with A. Axiom A⊑ ∃S.⊤ is in TQL, so u must be in C∃RTQL

(a),
a contradiction.

(iii) Assume that edge (u,v) in C∃RT (a) is an edge of smallest distance from the root which does
not also appear in C∃RTQL

(a). If (u,v) is (σ ,σw∃S) and labelled with S, we have already established
in (ii) that v and the edge must be in C∃RTQL

(a). So assume that (u,v) is labelled with U ̸= S. Since
(σ ,σw∃S)∈ SCT ,A and (σ ,σw∃S)∈UCT ,A , it must be the case that T |= S⊑U (from Definition 15).
But then we also have that TQL |= S ⊑ U and (σ ,σw∃S) ∈ SCT ,A (from Definition 15). So (u,v)
labelled with U must be in C∃RTQL

(a). The only possibility left is that (u,v) is (σw∃S,σ) and labelled
with some V . Hence, T |= S ⊑ V− (from Definition 15). But then we also have that TQL |= S ⊑
V− and (σw∃S,σ) ∈UCT ,A (from Definition 15). So (u,v) labelled with V must be in C∃RTQL

(a), a
contradiction.

The fact that each tree in the anonymous part of the canonical model of an ELHIℓinh KB
K = (T ,A) is a sub-tree of a tree in the anonymous part of the canonical model of the QL KB
KQL = (TQL,A) means that we can apply the tree-witness rewriting approach of (Kikot et al., 2012;
Kontchakov & Zakharyaschev, 2014) to our setting with almost no modification. The only modifica-
tion is to take into account that atoms in a CQ need to be rewritten using the technique in Section 6.1.
Nevertheless, for completeness, we present a brief overview of the tree-witness rewriting approach
below, adapted from (Kontchakov & Zakharyaschev, 2014). The tree-witness rewriting is applied
to a CQ and an ELHIℓinh KB K = (T ,A), where A is assumed to be H-complete with respect to
T (see the definition below). This is not a limitation because the tree-witness rewriting can itself
be rewritten using the results of Section 6.1 so that it is correct for an arbitrary ABox, as shown in
Proposition 8 below.

Definition 17 (H-completeness, cf. (Kontchakov & Zakharyaschev, 2014)). Let T be a (not nec-
essarily flat) ELHIℓinh TBox. An ABox A is said to be H-complete with respect to T if, for each
concept name A and each role name P, we have:

• A(a) ∈ A if IA |= B(a) and T |= B⊑ A, for (complex) concept B.

• P(a,b) ∈ A if either (i) IA |= R(a,b) and T |= R⊑ P, or (ii) IA |= R(b,a) and T |= R⊑ P−,
for some R.

Given an arbitrary ABox A, its H-completion with respect to T , denoted AH , is given by initially
adding the assertions in A to AH and then adding to AH all assertions satisfying either of the
conditions above.

Recall that, given a CQ q of arity n, we say that a C2RPQ p is a perfect rewriting of q with
respect to an ELHIℓinh TBox T , if, for any ABox A and any n-tuple a from ind(A), the following
holds:

(T ,A) |= q(a) if and only if IA |= p(a).

When the above formula holds only if A is H-complete with respect to an ELHIℓinh TBox T ,
then we say that p is a perfect rewriting of q and T over H-complete ABoxes, cf. (Kontchakov &
Zakharyaschev, 2014). Kontchakov and Zakharyaschev observe that, if an ABox A is H-complete
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with respect to T , then the ABox part of CT ,A, i.e. the part that does not contain labelled nulls,
coincides with IA. Thus, if T is flat then q itself is clearly the perfect rewriting of q and T over
H-complete ABoxes.

They also state the following proposition, slightly reworded here. We prove it below for
ELHIℓinh because our definition of T -ext is different to theirs.

Proposition 8. Let T be an ELHIℓinh TBox and q be a CQ. If p is the perfect rewriting of q and T
over H-complete ABoxes, then pT -ext is the perfect rewriting of q with respect to T .

Proof. Let q be a CQ and p be the perfect rewriting of q and T over H-complete ABoxes. Recall that
pT -ext is formed by replacing each atom A(u1,u2) in p, where A is a concept name, by AT -ext(u1,u2),
and each atom P(u1,u2) in p, where P is a role name, by PT -ext(u1,u2). LetA be an arbitrary ABox,
with AH its H-completion.

Assume atom A(u1,u2) in p, where A is a concept name, matches assertion A(a) ∈ AH . Then
either A(a) ∈ A or IA |= B(a) and T |= B ⊑ A, for (complex) concept B. Corollary 3 shows that
T |=B⊑A if and only if B∈ L(NFAA,T ). Recall that AT -ext(u1,u2) =α(u1,u2), where α is a regular
expression denoting L(NFAA,T ). Hence, AT -ext(u1,u2) in pT -ext will match assertion A(a) ∈ A.

Now assume that P(u1,u2) in p, for P a role name, matches assertion P(a,b) ∈AH . Then either
P(a,b) ∈A or (i) IA |= R(a,b) and T |= R⊑ P, or (ii) IA |= R(b,a) and T |= R⊑ P−, for some R.
Recall that PT -ext(u1,u2) = (R1 | · · · | Rn)(u1,u2), where each Ri is a role name such that T |= Ri ⊑ P
or an inverse role name such that T |= Ri ⊑ P−. Hence, PT -ext(u1,u2) in pT -ext will match assertion
P(a,b) ∈ A.

Consider a CQ q and a ELHIℓinh knowledge base (T ,A). Let a be a tuple of individuals from
ind(A) and h be a homomorphism from q(a) to CT ,A. A subset of atoms in q are mapped by h to the
ABox part of CT ,A, with the remainder mapped to trees in the anonymous part of CT ,A. The tree-
witness rewriting of q and T considers all possible ways in which the atoms of q can be mapped to
CT ,A. As a result, it produces a union of CQs, where each CQ in the rewriting has atoms which are
guaranteed to match the anonymous part of CT ,A removed.

Example 18. Consider the ELHIℓinh (but not QL) TBox T with the axioms

Instructor ⊑ ∃ teaches.⊤
teaches⊑ taughtBy−

∃ taughtBy.Pro f ⊑Course

Course⊑ ∃hasTitle.⊤

and the CQ
q(x)← teaches(x,y),hasTitle(y,z).

In what follows, and particularly in Figure 5, we will use the abbreviations I for Instructor, T for
teaches, T B for taughtBy, P for Pro f , C for Course and HT for hasTitle.

Let A be an ABox such that a,b ∈ ind(A), where a is an Instructor and b is a Course, i.e., we
have a ∈ ICT ,A and b ∈CCT ,A . Then CT ,A must also contain the trees C∃TT (a) and C∃HT

T (b). If a is
also a Pro f , then the two trees are as shown in Figure 5.

Any homomorphism h from the atoms of q(x) to CT ,A must map the answer variable x to ind(A)
in order for h(x) to be a certain answer. Assuming that there are individuals c, d and e in ind(A)
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Figure 5: Homomorphisms from subsets of q to C∃TT (a) and C∃HT
T (b).

such that c teaches d and d has title e, then there is a homomorphism h1 which maps x, y and z to c,
d and e, respectively, leaving the original query unchanged. A second homomorphism, shown as h2
in Figure 5, maps x and y to ind(A), and if h2(y) = b is in CCT ,A , maps the last atom of q(x), namely
HT (y,z), to C∃HT

T (b). The third homomorphism, shown as h3 in Figure 5, maps x to an individual
a which is in both ICT ,A and PCT ,A . As a result, both atoms of q(x) can be mapped to C∃TT (a).
These three homomorphisms give rise to the tree-witness rewriting of q(x) and T over H-complete
ABoxes as the union of the following three conjunctive queries:

q1tw(x)← teaches(x,y),hasTitle(y,z)

q2tw(x)← teaches(x,y),Course(y)

q3tw(x)← Teacher(x),Pro f (x)

Each tree witness is closely related to a homomorphism such as those in the above example,
in that it results in some subset of the atoms in a query being able to be mapped to a tree in the
anonymous part of the canonical model. We now include the formal definition of tree witnesses
because they are needed in the proofs of the complexity results in Section 7. We refer the reader
who is interested in the details of how tree witnesses are used to generate the tree-witness rewriting
to (Kikot et al., 2012; Kontchakov & Zakharyaschev, 2014).

Let T be an ELHIℓinh TBox in normal form and q a CQ with at least one existentially quantified
variable in its body. Consider a pair t = (tr, ti) of disjoint sets of variables appearing in q, where

• ti is non-empty and contains only existentially quantified variables, and

• tr can be empty or can contain answer variables and existentially quantified variables.

Let
qt = {S(zzz) | S(zzz) is an atom in the body of q, zzz⊆ tr ∪ ti and zzz ̸⊆ tr}.
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Then t is a tree witness for q and T generated by ∃R.⊤ if the following two conditions are satisfied:

(a) there exists a homomorphism h from qt to C∃RT (a), for some a, such that tr = {z | h(z) = a}
and ti contains the remaining variables in qt, and

(b) qt is a minimal subset of q such that, for any y ∈ ti, every atom in q containing y belongs to
qt.

The terms in tr (if any) are called the roots of t and the (existentially quantified) variables in ti the
interior of t, cf. (Kontchakov & Zakharyaschev, 2014).

Example 19. There are two tree witnesses for the query q and TBox T of Example 18, t1 = (t1
r , t1

i )
and t2 = (t2

r , t2
i ), with t1

r = {y}, t1
i = {z}, t2

r = {x} and t2
i = {y,z}. The corresponding sets of atoms

of q for each are qt1 = {hasTitle(y,z)} and qt2 = {teaches(x,y),hasTitle(y,z)}. Tree witness t1 is
generated by ∃hasTitle.⊤ since homomorphism h1 in Figure 5 maps t1

r = {y} to the root of C∃HT
T (b).

Tree witness t2 is generated by ∃teaches.⊤ since homomorphism h2 maps t2
r = {x} to the root of

C∃TT (a).

Given a CQ q and ELHIℓinh TBox T , the union of CQs produced by the tree-witness rewriting
of q and T over H-complete ABoxes is denoted by qtw.

Proposition 9. Let T be an ELHIℓinh TBox in normal form and q a CQ. For any H-complete ABox
A and any tuple a of individuals from ind(A), we have CT ,A |= q(a) if and only if IA |= qtw(a).

Proof. Let TQL be the QL TBox corresponding to T . Proposition 27 in (Kikot et al., 2012) shows
that CTQL,A |= q(a) if and only if IA |= qtw(a), for any H-complete ABox A and any tuple a of
individuals from ind(A). SinceA is H-complete, the proof involves only the structure of the anony-
mous part of CTQL,A, which is equal to the “join” of the trees C∃R(a)TQL

for each individual a and ∃R
in TQL (Kontchakov & Zakharyaschev, 2014). Proposition 7 shows that tree in CT ,A is a sub-tree
of a tree in CTQL,A. Therefore, the proof in (Kikot et al., 2012) carries through for ELHIℓinh TBox
T .

Let q be a CQ and qtw be the tree-witness rewriting of q. We denote by qtwT -ext the result of
replacing each CQ p in qtw by the C2RPQ pT -ext (see Definition 13). Thus, qtwT -ext is a UC2RPQ.

Theorem 5. Let T be an ELHIℓinh TBox in normal form and q a CQ. For any ABox A and any
tuple a of individuals from ind(A), we have CT ,A |= q(a) if and only if IA |= qtwT -ext(a).

Proof. The proof follows directly from Propositions 8 and 9.

7. Complexity Analysis

In this section, we establish results on the computational complexity of the problem of query answer-
ing for ELHIℓinh knowledge bases. For CQ answering, we show that the problem is NLOGSPACE-
complete with respect to data complexity and is NP-complete with respect to combined complexity;
for IQ answering, we show that the problem is NLOGSPACE-complete with respect to data com-
plexity and is in PTIME with respect to combined complexity. We present our complexity results
in terms of query answering problems (as is common practice (Calvanese et al., 2013)), although
technically the results refer to the decision versions of the problems.
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y1 x1 x2 x3 y2 y3

A1 A3 B3

T R T S S

Figure 6: Conjunctive query as a labelled directed multigraph, with answer variables filled in black.

Here we view a CQ as a labelled directed multigraph ⟨N,E,ψ, ℓN , ℓE⟩, with N a set of nodes, E
a set of edges, ψ : E→N×N an incidence function assigning to each edge an ordered pair of nodes,
ℓN : N → A a function assigning labels to nodes from the set of concept names, and ℓE : E → R a
function assigning labels to edges from the set of role names. For a given CQ q, the graph of q is
composed as follows:

1. the set of nodes N is the set of terms in q;

2. for each atom in the body of q of the form A(x), there is a label assignment x→ A ∈ ℓN ; and

3. for each atom of the form R(x1,x2), there is an edge (x1,x2) ∈ E and a label assignment
(x1,x2)→ R ∈ ℓE .

For example, the graph of the query

q(x1,x2,x3)← A1(x1),A3(x3),B3(y3),T (x1,y1),R(x1,x2),T (x2,x3),S(x3,y2),S(y3,y2)

is illustrated in Figure 6, where node identifiers are shown below each node and label assignments
for nodes are shown above each node. Also, in this section we adopt the notion of a polytree, which
is simply a directed graph with the property that ignoring the directions on edges and then merging
multiple edges between nodes yields an undirected graph with no cycles (this is a generalisation of
the definition in (Dasgupta, 1999)).

Definition 18. Given a CQ q and a set of terms ttt in q, we say that q is polytree-transformable with
respect to ttt if there is a homomorphism h from the terms of q to terms of q, such that:

1. for each t ∈ ttt, h(t) = rooth, where rooth denotes what we term the root of h;

2. for each term t in q such that t ̸∈ ttt, we have that h(t) ̸= rooth; and

3. the graph of h(q), i.e., the query resulting from applying h to each term in q, is a polytree.

Example 20. Consider the CQ q

q(x)← R(x,y1),R(x,y2),U(y2,x),S(y1,y3),T (y1,y4),T (y2,y4),R(y5,y2)

whose graph is not a polytree (see Figure 7). Query q is polytree-transformable with respect to
{x,y5} via the homomorphism h = {x→ x,y1→ y2,y3→ y3,y4→ y4,y5→ x} where rooth = x. The
transformation results in the query h(q):

h(q)(x)← R(x,y2),U(y2,x),S(y2,y3),T (y2,y4).

Figure 7 shows the graphs of q and h(q).
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Figure 7: The graphs of q and h(q) of Example 20

Definition 19. Consider a query q such that the graph of q is a polytree, a term root in q, a constant
a and a TBox T . We say that q tree-maps C∃RT (a) on root if there is a homomorphism h from the
atoms of q to C∃RT (a) such that h is an injective function and h(t) = a only if t = root.

Proposition 10. Consider a CQ q, a set of terms t in q, a TBox T and a pair t = (tr, ti) of disjoint
sets of terms in q, where ti is non-empty and contains only existentially quantified variables, and
tr contains the remaining terms of q. Then, there exists a homomorphism h from the atoms of q
to C∃RT (a), for some a, such that tr = {z | h(z) = a} if and only if q is polytree-transformable with
respect to tr via a homomorphism h, and h(q) tree-maps C∃RT (a) on rooth.

Proof. (Only if) From the definition of h, we know that h(z) = a if and only if z ∈ tr, and therefore
conditions (1) and (2) in Definition 18 are satisfied. From Theorem 4 we know that, for every ABox
A, each labelled null in C∃RT (a) is also a w-path σ . From Definition 15, it is clear that each edge in
C∃RT (a) must be from a w-path σ to a w-path σw∃S, for some role name S, or vice versa. Hence, the
only cycles that can exist in C∃RT (a) must be between pairs of adjacent nodes. It follows that h(q)
is a polytree and condition (3) in Definition 18 is also satisfied. Now, we know that q is polytree-
transformable with respect to tr via h(q) with rooth = a. It follows that h(q) tree-maps C∃RT (a) on a
via the identity function i, since h is a homomorphism from the atoms of q to C∃RT (a) and i(t) = a
only if t = rooth = a. Also, the identity function i is injective by definition, so the claim follows.

(If) We know that q is polytree-transformable with respect to tr via a homomorphism h, and
h(q) tree-maps C∃RT (a) on rooth via some homomorphism h∗. Now, set h = h ◦ h∗. Then, h is a
homomorphism from the atoms of q to C∃RT (a). From Definition 19 we know h∗(t) = a only if
t = rooth. Also, from Definition 19 we know that i) for each tr ∈ tr, h(tr) = rooth, and that ii) for
each term in q, ti, such that ti ̸∈ tr, we have that h(ti) ̸= rooth. Thus, tr = {z | h(z) = a} and the
claim follows.

Definition 20. Let T be an ELHIℓinh TBox, a an arbitrary individual, and ∃R.⊤ a complex concept
appearing on the RHS of an axiom in T . We define the length of a labelled null (i.e., w-path)
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appearing in C∃R(a)T as follows: the length of aw∃R is one, while the length of aw∃Rw∃T1 · · ·w∃Ti ,
i⩾ 1, is i+1. We then define C∃R(a)Tn

as the maximum subset of C∃R(a)T such that each null in C∃R(a)Tn
is of length at most n.

The above definition is used in the following lemma to limit the size of trees to which a tree
map from query q can be found.

Lemma 6. Let q be a polytree query with root root, T be an ELHIℓinh TBox and a be an individual.
If the maximum length of any path in the graph of q starting from root is n, then q tree-maps C∃R(a)T
on root only if q tree-maps C∃R(a)Tn

on root.

Proof. If q tree-maps C∃R(a)T on root then there is an injective homomorphism h from the atoms of
q to C∃R(a)T such that h(t) = a only if t = root. Any path in the graph of q must be mapped by h to a
path of the same length in C∃R(a)T since h is injective. We know that the maximum length of any path
in the graph of q starting from root is n; hence h maps this to a path of maximum length n starting
from a in C∃R(a)T . We conclude that q tree-maps C∃R(a)Tn

on root.

The following theorem resolves the complexity of answering IQs and CQs with respect to data
complexity.

Theorem 6. Answering IQs and CQs on ELHIℓinh knowledge bases is NLOGSPACE-complete with
respect to data complexity.

Proof. It is known that the problem of answering IQs in ELHℓin is NLOGSPACE-hard with respect
to data complexity (Calvanese et al., 2013), so the same holds for ELHIℓinh , which is a proper
extension of ELHℓin. Membership in NLOGSPACE for IQ answering follows from the fact that we
can rewrite instance queries to 2RPQs, and answering 2RPQs is in NLOGSPACE (Barceló Baeza,
2013).

For CQs, the upper bound follows from the tree-witness rewriting algorithm which generates
a perfect rewriting of q for T as a UC2RPQ query, and the fact that the problem of UC2RPQ
answering is NLOGSPACE-complete with respect to data complexity (Barceló Baeza, 2013). For
both IQs and CQs, the rewriting algorithm relies solely on the query and the TBox. Since both the
query and the TBox are considered fixed in the definition of data complexity, producing the rewriting
is done in constant time; therefore, the rewriting algorithm does not use more than logarithmic space.

In terms of combined complexity, the following theorem classifies the problem of answering
CQs, while Theorem 8 deals with the problem of answering IQs.

Theorem 7. Answering CQs on ELHIℓinh knowledge bases is NP-complete with respect to com-
bined complexity.

Proof. For the upper bound for CQs, we present the following non-deterministic version of the
rewriting algorithm for a given CQ q and TBox T :

1. guess a tree witness qt = {S(zzz) | S(zzz) is an atom in the body of q, zzz⊆ tr ∪ ti and zzz ̸⊆ tr};

2. guess a homomorphism h from the atoms of qt to the atoms of qt;
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3. check that each term t ∈ tr maps to the same term, i.e., rooth;

4. check if the graph of h(qt) is a polytree via a graph traversal (in polynomial time with respect
to the size of qt);

5. guess a role name R and generate C∃R(a)Tm
, where a = rooth if rooth is a individual name (or for

an arbitrary individual a otherwise), and m is the length of the longest path in h(qt) starting
from rooth; the cost of generating C∃R(a)Tm

is bounded by m×|T |;

6. check if h(qt) tree-maps C∃R(a)Tm
on rooth:

(a) guess an injective function h from the terms in h(qt) to the terms in C∃R(a)Tm
;

(b) check if h(h(qt))⊆ C∃R(a)Tm
;

7. check if qt is a minimal subset of q such that, for any y ∈ ti, every atom in q containing y
belongs to qt;

8. rewrite q to q′ accordingly and generate q′T -ext;

9. check if q′T -ext is true when evaluated on the ABox.

Since q′T -ext is a C2RPQ and the data complexity of answering C2RPQs over a plain database is in
NLOGSPACE, the problem of answering q is in NP. This NP bound is optimal, since the combined
complexity of CQ answering is already NP-hard for DL-LiteR (Calvanese et al., 2007).

Theorem 8. Answering IQs on ELHIℓinh knowledge bases is in PTIME with respect to combined
complexity.

Proof. For a concept instance query we can build the NFA in polynomial time, and then answer the
path query resulting from the rewriting over the ABox. For a role instance query, the rewriting can
be constructed in linear time and the resulting query is a 2RPQ.

We also need to consider the cost of satisfiability of NIs, which is done (as before) by checking
the knowledge base against a set of Boolean CQs of linear size with respect to the TBox. By
definition, these Boolean CQs contain at most two atoms and two variables. Thus, we can generate
the rewriting of each BCQ in polynomial time by substituting the non-deterministic guesses of the
algorithm presented in the proof of Theorem 7 with the following deterministic steps:

1. generate all the possible tree-witnesses qt, of which are at most three;

2. generate the homomorphisms h from the atoms of qt to the atoms of qt; the number of homo-
morphisms is bounded by 22;

3. generate the set of all C∃R(a)Tm
, whose size is bounded by |T |; note that m is at most 1;

4. check if h(qt) tree-maps C∃R(a)Tm
on rooth; by definition, this is possible only if the term in h(qt)

that is not rooth is mapped via h to a term in C∃R(a)Tm
that is not a, and then h(h(qt))⊆ C∃R(a)Tm

;
since m is at most 1, then the number of injective functions h is bounded by |T |.

At this point, we only need to check each rewritten query against the ABox alone, thus not using
more than logarithmic space for each query, since they are Boolean C2RPQs.
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8. Conclusions

In this paper we have introduced the ontology language ELHIℓinh (harmless linear ELH) which
generalises both of the ontology languages DL-LiteR and linear ELH. We have shown that our
language allows for both qualified existential quantification on the left-hand sides of axioms as
well as inverse roles, but only if their interaction is deemed harmless. We have shown that in-
stance queries (queries with a single atom in their body) are rewritable with respect to ELHIℓinh
knowledge bases using 2RPQs as the target language. The query rewriting algorithm makes use
of non-deterministic finite-state automata. Following on from that, we proposed a query rewrit-
ing algorithm for answering conjunctive queries under ELHIℓinh knowledge bases, with UC2RPQs
as the target language. This algorithm utilises the tree-witness rewriting of (Kontchakov & Za-
kharyaschev, 2014) along with the above NFA-based rewriting technique. Since UC2RPQs can be
straightforwardly expressed in SPARQL 1.1 by means of property paths, our approach is directly
applicable to real-world querying settings.

In terms of computational complexity, we have proved that CQ answering with respect to
ELHIℓinh ontologies is in NLOGSPACE in terms of data complexity and in NP in terms of com-
bined complexity; we have shown that these bounds are tight. In addition, we have shown that
instance query answering with respect to ELHIℓinh ontologies is NLOGSPACE-complete with re-
spect to data complexity and in PTIME with respect to combined complexity. Our contribution in
this paper is therefore an ontology formalism that combines highly tractable query answering with
greater expressive power than the ontology languages on which it is based. DL-LiteR is used in
real-world application domains such as energy, healthcare, government, education and innovation,
transport and infrastructure (Xiao, Ding, Cogrel, & Calvanese, 2019); therefore our new language
ELHIℓinh will allow knowledge of greater expressivity to be modelled in these, and possibly other,
domains while retaining tractable query answering.

Future work includes an empirical evaluation of our rewriting algorithms on real-world data
sets, and investigation of other ontology languages that may lie within the scope of tractability of
CQ answering. In particular, it would be interesting to investigate more general ways of introducing
inverse roles into our language.
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