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Ranking-based Color Constancy with Limited
Training Samples

Bing Li, Haina Qin, Weihua Xiong, Yangxi Li, Songhe Feng, Weiming Hu, Stephen Maybank

Abstract—Computational color constancy is an important component of Image Signal Processors (ISP) for white balancing in many
imaging devices. Recently, deep convolutional neural networks (CNN) have been introduced for color constancy. They achieve
prominent performance improvements comparing with those statistics or shallow learning-based methods. However, the need for a
large number of training samples, a high computational cost and a huge model size make CNN-based methods unsuitable for
deployment on low-resource ISPs for real-time applications. In order to overcome these limitations and to achieve comparable
performance to CNN-based methods, an efficient method is defined for selecting the optimal simple statistics-based method (SM) for
each image. To this end, we propose a novel ranking-based color constancy method (RCC) that formulates the selection of the optimal
SM method as a label ranking problem. RCC designs a specific ranking loss function, and uses a low rank constraint to control the
model complexity and a grouped sparse constraint for feature selection. Finally, we apply the RCC model to predict the order of the
candidate SM methods for a test image, and then estimate its illumination using the predicted optimal SM method (or fusing the results
estimated by the top k SM methods). Comprehensive experiment results show that the proposed RCC outperforms nearly all the
shallow learning-based methods and achieves comparable performance to (sometimes even better performance than) deep
CNN-based methods with only 1/2000 of the model size and training time. RCC also shows good robustness to limited training samples
and good generalization crossing cameras. Furthermore, to remove the dependence on the ground truth illumination, we extend RCC
to obtain a novel ranking-based method without ground truth illumination (RCC NO) that learns the ranking model using simple partial
binary preference annotations provided by untrained annotators rather than experts. RCC NO also achieves better performance than
the SM methods and most shallow learning-based methods with low costs of sample collection and illumination measurement.

Index Terms—Color constancy, Illumination estimation, Ranking, Feature selection.

✦

1 INTRODUCTION

COLOR, as one of the most important visual cues, has
been used in many computer vision applications, such

as white balancing, image understanding, and image match-
ing [1], [2], [3]. The color signal (i.e., RGB values) from any
imaging device is affected by three factors: the color of light
incident on the scene, the object’s surface reflectance, and
the sensor sensitivity functions of the camera [2], [3], [4].
Therefore, the same surface, under different lights, usually
has a different color. Computational color constancy aims to
remove the effect of illumination and stably perceive color
of the surface. The crucial step is illumination estimation
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that tries to estimate the color of the light [4], [5].
The illumination estimation methods are usually di-

vided into two categories: statistics-based methods (SM)
and learning-based methods (LM) [6], [7]. The SM methods
estimate the illumination using the nature of the image
itself without any training stage, such as MaxRGB (also
called White Patch, WP) [8], Grey World (GW) [9], and
Grey Edge (GE) [10]. The LM methods find a mapping
function between the image (or its visual features) and its
illumination using machine learning methods. According to
which kind of machine learning technique is used, the LM
methods can be further divided into shallow LM methods
and deep LM methods.The methods belonging to the former
one always use the traditional shallow learning methods,
such as Support Vector Regression (SVR) [11] and Bayesian
model [12], to learn the relationship between these hand-
crafted features and illumination values. The deep LM
methods try to build up an end-to-end deep convolutional
neural networks (CNN) model [13], [14], [15], [16], [17]
between input images and illumination values. Recently, the
deep LM methods [13], [14], [15], [16], [17] achieve better
results than shallow LM methods [11], [12]. Although past
decades have witnessed great development of both SM and
LM methods, they still have the following limitations:

• The robustness of the SM methods is limited because
their models depend on some very specific assump-
tions. Once the model is determined, it remains fixed
for all test images. It is difficult for a fixed model to
be robust and effective enough to handle the wide
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Fig. 1. An overview of the Ranking-based Color Constancy. The binary
relation M1 ≻ M2 means that M1 method achieves better performance
than M2 on this image.

variety of images in real-world scenarios.
• The deep LM methods need a large number of la-

belled training samples. Unlike some other computer
vision tasks, it is expensive and time-consuming to
collect training images with accurate illumination
values for color constancy research.

• Most deep LM methods should run on high-
performance Graphics Processing Units (GPUs) dur-
ing both the training and inference stages. The high
computational cost makes these methods unsuitable
for some real-time systems, especially for image sig-
nal processors (ISP) in cameras and cellphones.

In order to overcome the aforementioned limitations and
achieve comparable performance to the deep LM methods,
we design an efficient method based on existing simple SM
methods with limited training samples. Given a number of
images and a certain number of simple SM methods, we
try to select the optimal one for each image. In this way,
significant improvements in performance can be obtained.
Consequently, we propose a novel ranking-based color con-
stancy method (RCC). The paradigm of the proposed RCC
method lies in the fact that the optimal SM method selection
for an image should be a relative ranking problem, rather
than an exclusive selection problem. As shown in Fig. 1,
for each training image, M candidate SM methods are
firstly ranked according to their estimation results with the
ground truth illumination of the image. We then propose a
novel ranking model with a specific loss function. The low
rank and grouped sparse constraints are also introduced to
explicitly control the model complexity so that a reliable
prediction model can be learned even when the number of
training samples is limited. The ranking model is trained
using images and their corresponding rankings of the SM
methods. During the test stage, the ranking model is used to
predict the order of the candidate SM methods for a test im-
age, and then estimate its illumination using the predicted
optimal SM method (or fusing the results estimated by the
top k SM methods).

The method in the literature most similar to RCC is
the natural image statistics-based method (NIS) [18]. NIS
models the optimal SM method selection as an ’exclusively

selection’ through a multi-class classification strategy. Com-
pared with NIS, RCC has the following advantages:

• RCC takes the ordinal relationship of all SM can-
didates into account during the training procedure,
while NIS only considers the best one but ignores
relative ranking and the relationship among different
candidates.

• The ranking model in RCC makes it less sensitive
to the imbalanced number of training examples. The
multi-class classification in NIS easily suffers from
an imbalanced data distribution that becomes more
severe with the increase of the number of classes.

• NIS pre-defines the Weibull-based texture descriptor
as the visual features of images. However, the best
choice of the features is unclear. In contrast, RCC
learns the most effective features during the training
stage.

Ideally, the ranking list for each image in RCC should be
computed using the ground truth illumination. However,
it is expensive and time-consuming to obtain the ground
truth illumination of an image. In order to measure an
accurate illumination value, each image should contain a
color checker in the scene [19] [20] [21]. Then the position of
the color checker in the image should be marked manually.
The illumination value is computed using the color checker
by color experts, rather than by untrained annotators. In
order to remove the dependence on the ground truth il-
lumination, we further extend RCC to propose a novel
ranking-based method without ground truth illumination
(RCC NO). RCC NO learns the ranking model based on
simple partial binary preference annotations provided by
any untrained annotator.

The contributions of this paper are summarized as fol-
lows:

• It formulates finding the optimal SM method for
an image as a label ranking problem, rather than
a classification problem. To our best knowledge, no
previous methods use label ranking to solve the color
constancy problem.

• It proposes a novel ranking model, RCC, based on
a specific ranking loss. It introduces a low-rank
constraint to control the model complexity and a
grouped sparse constraint for feature selection. Thus
a reliable prediction model can be learned, even
when the number of training images is limited.

• It presents an efficient optimization algorithm for
RCC based on the Accelerated Proximal Gradient
method (APG) and Alternating Direction Method
(ADM) [22].

• It further extends RCC to a novel ranking-
based method without ground truth illumination
(RCC NO) that can learn from binary prefer-
ence annotations supplied by untrained annotators.
RCC NO reduces the requirements of illumination
measurements for color constancy and is more prac-
tical for imaging devices.

• A large number of experimental results show that
RCC is comparable to or even better than most com-
plex deep LM methods, even though it has a much
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lower time complexity and requires fewer training
images. The proposed RCC can easily be extended to
incorporate new features and new SM/shallow LM
methods for illumination estimation.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 describes
the proposed RCC method in detail. Sections 4 and 5
demonstrate the experimental results and analysis. Section
6 extends RCC to RCC NO. Section 7 concludes the paper.

2 RELATED WORK

The color signal of the pixel x in RGB channels ,
f(x) = [fR(x), fG(x), fB(x)]

T , recorded by a camera
for light reflected from a matte surface at corresponding
spatial coordinate x′ depends on the surface reflectance
S(x′, λ) , the spectral power distribution P (λ) of the light,
and the camera’s spectral sensitivity functions ρ(λ) =
[ρR(λ), ρG(λ), ρB(λ)]

T [5]:

fc(x) =

∫
ω

P (λ)S(x′, λ)ρc(λ)dλ, c = {R,G,B}, (1)

where ω is the visible spectrum interval, and λ indicates
wavelength. Assuming that the relative spectral power dis-
tribution remains the same throughout the scene, for the
case of an ideal ‘white’ surface reflectance, we obtain the
color corresponding to the illumination as e ∈ [R,G,B]T

(in RGB channels). Given an image, the value f(x) of each
pixel is known, the color constancy aims to estimate the
illumination e.

During the last decades, the scientific community and
the imaging industry have witnessed rapid development in
illumination estimation [4], [23]. This section briefly reviews
both SM and LM methods.

2.1 Statistics-based Method (SM)

The SM methods use the statistical nature of the image’s
color channels themselves to estimate the illumination with-
out learning stage. The simplest SM method is the MaxRGB
algorithm (also called White Patch) [8] that estimates the
illumination using the maximum response from the differ-
ent color channels. The Grey World (GW) algorithm [9],
which assumes that the average of the channels represents
the illuminant color, is another widely-used SM method.
Finlayson et al. [24] integrate GW and MaxRGB into a
unified Shades of Grey algorithm (SoG) framework using
the Minkowski-norm. Weijer et al. [10] further generalize the
SoG to obtain a Grey Edge framework (GE) by including
higher-order derivatives and the Minkowski-norm. Gao et
al. [25] propose a SM method by modeling the double-
opponent cells (DO) of the human visual system. They
further explore the human visual system and propose a
retinal mechanism inspired method (RM) [26]. Li et al [27]
propose to use achromatic surfaces (AS) and Yang et al [28]
propose a method using grey pixels (GP) for illumination es-
timation. Both AS and GP find achromatic pixels in natural
scenes for illumination estimation. Cheng and Brown [29]
find that large color differences (LCD) are highly correlated
with the illumination and select bright and dark pixels for

illumination estimation. Tan et al [30] estimate illumination
using an inverse-intensity chromaticity space. Bianco and
Cusano [7] propose a quasi-unsupervised method (QU) that
does not require ground truth illumination information but
still needs a training phase.

2.2 Learning-based Method (LM)
This section reviews the LM methods from two categories:
shallow LM and deep LM.

2.2.1 Shallow Learning-based Method
A classical shallow LM method is Bayesian color constancy
(BCC), which is proposed by Brainard and Freeman [12] and
extended by Gehler et al. [31]. Traditional shallow neural
networks (NN) are also introduced by Cardei et al. [32] for
illumination estimation after feeding binarized chromaticity
histograms. To improve the generalization of NN, Xiong
et al [11] replace the neural networks with Support Vector
Regression (SVR). Color by correlation (CbyC) [33] mod-
els the relationship between illuminants and chromaticity
distributions using a correlation matrix. The illuminant
with the highest probability is chosen as the final estimate.
Chakrabarti et al. [34] propose spatio-spectral statistics fea-
tures (SSS) for learning an estimation model using maxi-
mum likelihood. Gamut mapping algorithm (GM) [22] is
another typical Shallow LM method that finds the rela-
tionship between the illumination and the canonical gamut.
Gijsenij et al. [35] generalize GM by adding the derivative
structures of images. The corrected-moment method (CMM)
[36] learns a regression matrix to map the color moments
of an image to its illumination. Cheng et al. [37] train
regression trees on a set of simple features for illumination
estimation (SF). Barron [38] proposes a convolutional color
constancy (CCC) method, in which a convolutional filter
is used for illumination estimation. He further speeds up
the CCC method with a fast Fourier color constancy (FFCC)
method [39] in the frequency domain.

Besides low-level visual features, some high-level scene
knowledge can be introduced into shallow LM methods.
Vazquez-Corral et al. [40] extend CbyC to a category
correlation-based method after integrating color categories.
Exemplar-based color constancy (ECC) [41] finds the near-
est neighbor surfaces for each surface in a test image for
illumination estimation. Li et al. [5] propose a multi-cue
illumination estimation framework (MC) based on a tree-
structured joint sparse representation by combining low-,
mid- and high-level features. Faces and skin regions are
also used as cues for illumination estimation [42]. Gijsenij
et al. [18] use Weibull parameterization for natural image
statistics (NIS) to improve performance of SM methods.
Bianco et al [43] select the best SM method for each image
based on its content-related features using a decision forest
(IC). They also introduce indoor and outdoor scene category
as a cue for illumination estimation (IO) [44]. Lu et al. [45]
use 3D scene geometry to model an image and select the
best SM for each region (SG). Weijer et al. [46] propose a
high-level visual information-based method (HVI). It firstly
applies several SM methods to compute a set of possible
illuminants, and then selects the optimal one resulting in
the most likely semantic composition of the image (such as
green grass and grey road).
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2.2.2 Deep Learning-based Method
More recently, deep convolutional neural networks (CNN)
have been used for illumination estimation in an end-to-end
manner and achieve impressed performance improvements.
Bianco et al. [13] pioneer a CNN-based method (CNNM)
to predict the scene illumination without hand-crafted fea-
tures. They [14] extend the network architecture to include
both single and multiple illumination estimation. A fully
convolutional network architecture (FC4) [15] is also applied
to learn the confidence weights of image patches and esti-
mate illumination by fusing the estimates obtained from the
patches. Shi et al. [16] design a deep specialized network
architecture (DS-net) with two interacting subnetworks,
namely a hypotheses network that generates multiple illu-
minant hypotheses and a selection network that adaptively
picks the most plausible hypotheses. Oh et al. [17] cast the
color constancy problem as an illumination classification
problem using CNN (C-CNN), in which images are first
clustered based on the illumination color. The clusters are
then used as ground truth to train the networks. Xu et al
[6] introduce an illuminant-guided triplet network (IGTN)
to generate a discriminative feature for achieving accurate
illuminant estimation. Lo et al [47] propose a contrastive
learning-based color constancy method (CLCC), in which
deep neural networks learn better illuminant-dependent
features via a raw-domain sample augmentation. Moreover,
cues from multiple cameras are also explored for color
constancy. Abdelhamed et al [48] leverage the availability
of two cameras in smart phones for illumination estimation
by proposing a two-camera network (TCN). Hernandez-
Juarez et al [49] propose a multi-hypothesis-based method
(MH), in which a Bayesian framework and an agnostic
CNN are used for illumination estimation. Xiao et al [50]
design multi-domain networks (MDN) by taking advantage
of cross-camera training data to improve the performance of
illumination estimation.

3 RANKING-BASED COLOR CONSTANCY

This section models illumination estimation as a label rank-
ing problem and proposes a ranking-based color constancy
method.

3.1 Formulation

Given an image Ii (i is the index for a set of images) and
a set of M candidate SM methods ψ = {ψ1, ψ2, ..., ψM},
we set zi,j = ψj(Ii) ∈ [R,G,B]T (in RGB channels) i.e. the
estimated illumination color for Ii using the jth candidate
SM method ψj . The performance of each candidate SM
method for Ii is evaluated according to the angular error [1],
[2]. For an image Ii, the angular error ang(ai, ei) between
the estimated illumination color ai ∈ [R,G,B]T and the
ground truth color ei is defined as

ang(ai, ei) = cos−1

(
ai • ei

∥ai∥ ∥ei∥

)
× 180◦

π
, (2)

where ∥•∥ is the modulus of a vector. We rank the candidate
SM methods in ψ = {ψ1, ψ2, ..., ψM} for the image Ii
according to the angular errors. Consequently, we define
a binary relation ≻ on the finite set ψ as ψj ≻ ψk if

ang(ψj(Ii), ei) < ang(ψk(Ii), ei) [51]. The pair (ψ,≻)
is called a partial order set (or poset) and is transitive
(ψj ≻ ψk ∧ ψk ≻ ψp ⇒ ψj ≻ ψp) [51]. Therefore a full
ranking list Li: ψq1

≻ ψq2
≻ ... ≻ ψq

M
for image Ii is

obtained according to ang(ψq
1
(Ii), ei) < ang(ψq

2
(Ii), ei) <

... < ang(ψq
M
(Ii), ei). The ranking list Li is the perfor-

mance ranking of the candidate SM methods for the image
Ii.

Assume that we are given N training images I1, ..., IN
along with their corresponding ground truth illumination
colors e1, ..., eN ∈ [R,G,B]T . Let ψ = {ψ1, ψ2, ..., ψM} be
a set of M candidate SM methods. For each training image
Ii, xi ∈ Rd is its visual feature vector with d dimensions.
We can obtain its corresponding SM ranking list Li based
on angular errors. RCC is to learn a function mapping the
visual feature to the ranking list. If ψ = {ψ1, ψ2, ..., ψM} is
treated as a label set, RCC can be viewed as a solution to the
label ranking problem.

According to the formulation, we would like to learn a
ranking function that assign a higher score to a SM method
ψj than to a SM method ψk for the image Ii, if ψj ≻ ψk.
The ranking function is defined as follows. Let gj(•) be the
score prediction function (is defined after (5)) for the SM
method ψj , let δ(•) be a logistic loss function (defined as
δ(z)= log(1 + e−z)), and let εj,k(xi) measure the error in
ranking ψj and ψk for image Ii. The error εj,k(xi) is defined
as follows:

εj,k(xi) = 1Li
(ψj ≻ ψk)δ(gj(xi)− gk(xi)), (3)

where 1Li
(ψj ≻ ψk) is an indicator function defined as:

1Li(ψj ≻ ψk) =

{
1, (ψj ≻ ψk) ∈ Li

0, (ψj ≻ ψk) /∈ Li
. (4)

The underlying meaning of (3) and (4) is that, if ψj ≻ ψk,
the score gj(xi) should also be higher than gk(xi). Using
ranking error εj,k(xi), we can obtain the ranking error for
an image Ii as:

ε(xi) =

M∑
j,k

εj,k(xi). (5)

If we assume that the score prediction function {gj(•)}Mj=1

are linear functions and represented as gj(xi) = wT
j xi. We

define W = [w1,w2, ...,wM ] ∈ Rd×M and the overall loss
function J(W) of N training images can be computed as:

J(W) = 1
N

N∑
i=1

M∑
j,k

εj,k(xi)

= 1
N

N∑
i=1

M∑
j,k

1Li
(ψj ≻ ψk)δ(w

T
j xi −wT

k xi)

(6)

A straightforward approach to search for the matrix W
is to minimize the loss function J(W). This simple ap-
proach could lead to the overfitting to the training data
when the number of the training images is relatively small.
Consequently, an additional regularization term Ω(W) is
introduced to control the model complexity and prevent the
overfitting to the training data, so we solve

Ŵ = argmin
W

{J(W) + Ω(W)} . (7)
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The regularization term Ω(W) in (7) is crucial for the
proposed RCC since it determines the interplay of the
different SM methods and related features. In this paper,
we define Ω(W) by focusing on two issues:

(1) Limited training samples. In order to make (7) be
trained on limited training samples, we effectively take
advantage of the correlation among different labels in ψ by
assuming that the prediction functions with different wj are
linearly dependent [52]. Consequentially, W is a low rank
matrix that is always represented as a relaxed form with
nuclear norm ∥∥∗, as ∥W∥∗ [53].

(2) Feature selection. Since it is still unclear which
visual features have high correlation to SM methods [18],
[43], [44], [45], we introduce a feature selection constraint
based on a grouped sparsity constraint with ℓ2,1-norm on

W( as ∥W∥2,1 =
d∑

j=1

√
M∑
k=1

(Wj,k)
2), which can learn to

select effective features automatically from a large number
of visual features. The ℓ2,1-norm regularization encourages
multiple score functions to share similar sparsity patterns so
as to implement feature selection [54].

According to the above analysis, the regularization term
Ω(W) can be written as Ω(W)=λ∥W∥∗ + γ∥W∥2,1 with
regularization coefficients λ and γ. Eq (7) can be rewritten
as:

Ŵ = argmin
W

{
J(W) + λ∥W∥∗ + γ∥W∥2,1

}
. (8)

3.2 Optimization

To optimize (8), we decompose the objective function F (W)
into two parts J(W) and Ω(W), i.e. F (W) = J(W) +
Ω(W), where Ω(W)=λ∥W∥∗ + γ∥W∥2,1. Based on this
decomposition, the Accelerated Proximal Gradient (APG)
algorithm [55], [56] can be used to solve (8). The APG has a
convergence rate of O(1/t2) (t denotes the iteration count)
with ‘optimal’ first-order gradients. The optimization of (8)
using APG is given in Algorithm 1.

Algorithm 1 Optimization algorithm for (8)

Initialize: H0 > 0, ξ > 0, W(0) ∈ Rd×M , V(0) = W(0),
α0 = 1, andt = 0
Repeat

1) Set H = Ht;
2) While F (rH(V(t))) > RH(rH(V(t)),V(t))

H = ξH ;
3) Set Ht+1 = H ;
4) Compute

W(t+1) = argmin
W

RHt+1
(W,V(t));

αt+1 = 2
t+3 ;

δt+1 = W(t+1) −W(t);

V(t+1) = W(t+1) +
1−αt

αt
αt+1δt+1;

5) Set t = t+ 1;
Until convergence of W(t)

Output W(t)

The generalized gradient update step in Algorithm 1 is
defined as:

RH(W,W(t)) =J(W(t))+<W −W(t),∇J(W(t)) >

+H
2

∥∥W −W(t)

∥∥2
F
+Ω(W),

(9)

rH(W(t)) = argmin
W

RH(W,W(t)), (10)

where W(t) is the solution of W at the tth iteration,
< A,C >= tr(ATC) denotes the matrix inner product,
and ∇J(W(t)) is the sub-differential of J(W) at W(t). After
rewriting (10), we obtain

rH(W(t))= argmin
W

(
J(W(t))+<W−W(t),∇J(W(t))>

+H
2
<W−W(t),W −W(t) > +Ω(W)

)
= argmin

W

(
<W,∇J(W(t))>+

H
2
<W,W>

−H<W,W(t)>+Ω(W)
)

= argmin
W

([
<W,W>−2<W,W(t)− 1

H
∇J(W(t))>

+<W(t)− 1
H
∇J(W(t)),W(t)− 1

H
∇J(W(t))>

]
+ 2

H
Ω(W)

)
= argmin

W

(∥∥W−
(
W(t)− 1

H
∇J(W(t))

)∥∥2

F
+ 2

H
Ω(W)

)
(11)

The ∇J(W(t)) can be computed as ∇J(W(t)) =

1
N

N∑
i=1

M∑
j,k

1Li
(ψj ≻ ψk)∇δ(wT

j xi −wT
k xi)xi(i

M
j − iMk ),

where iMj is a vector of M dimensions with all the elements
zero except for the jth element, which is 1. For the sake of
simplicity, we denote B =

(
W(t) − 1

H∇L(W(t))
)
, λ̃ = 2λ

H ,
γ̃ = 2γ

H and rewrite (11) as

rH(W(t)) = argmin
W

(
∥W −B∥2F + λ̃∥W∥∗ + γ̃∥W∥2,1

)
.

(12)
To solve (12), we first introduce an auxiliary variable U to
make the objective function separable, i.e., (12) becomes

rH(W(t)) = argmin
W

(
∥W −B∥2F + λ̃∥W∥∗ + γ̃∥U∥2,1

)
s.t. U = W .

(13)
Considering the balance between efficiency and accuracy in
practice, the convex problem defined in (13) can be solved
with the Alternating Direction Method (ADM) [57], which
minimizes the following augmented Lagrangian function ϑ:

ϑ(W,U,Y, µ) = ∥W −B∥2F + λ̃∥W∥∗ + γ̃∥U∥2,1
+Tr(YT (W−U))+µ

2 ∥W −U∥2F ,
(14)

where Y is the Lagrangian multiplier and µ > 0 controls
the penalty for violating the linear constraints. We can
obtain W by minimizing (14) with ADM [57]. We outline
the optimization procedure in Algorithm 2 and provide the
details for each iteration.

Updating W. When Uk is fixed, the update Wk+1 at
the (k + 1)th iteration is obtained by solving the following
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problem:

Wk+1 = argmin
W

ϑ(W,Uk,Yk, µk)

= argmin
W

∥W −B∥2F + λ̃∥W∥∗

+Tr((Yk)T (W−Uk))+µk

2

∥∥W −Uk
∥∥2
F

= argmin
W

τ∥W∥∗ +
1
2 ∥W −D∥2F

.

(15)
where τ = λ̃/(µk+2) and D = (2B+µkUk−Yk)/(µk+2).
The solution to (15) can be derived as [58]:

Wk+1 = PTτ [Σ]QT , where(P,Σ,VT ) =SV D(D), (16)

where Σ is the matrix of the singular values of D, and the
operator Tτ [•] is the singular value thresholding (SVT) [58]
defined by element-wise τ thresholding of Σ, i.e. Tτ [Σ] =
diag([tτ [σ1], tτ [σ2], ..., tτ [σr]]) for rank(Σ) = r, and each
tτ [σi] is determined as

tτ [σi]=

{
σi − τ, σi > τ

0, otherwise
(17)

Updating U. When Wk+1 is fixed, the update of Uk+1

at the (k + 1)th iteration is obtained by solving the following
problem:

Uk+1 = argmin
U

ϑ(Wk+1,U,Yk, µk)

= argmin
U

γ̃∥U∥2,1 +Tr((Yk)T (Wk+1−Uk))

+µk

2

∥∥Wk+1 −U
∥∥2
F

= argmin
U

η∥U∥2,1+
1
2 ∥U−E∥2F

,

(18)
where η=γ̃/µk and E = Wk+1 + Yk/µk. The solution to
(18) can be derived as [59]:

Uk+1
i =

{
0, ∥Ei∥ ≤ η

(1− η
∥Ei∥ )Ei, ∥Ei∥ > η . (19)

where Uk+1
i and Ei are the ith row of Uk+1 and E,

respectively.

Algorithm 2 Optimization algorithm for (14)

Input: B =
(
W(t) − 1

H∇L(W(t))
)
, λ̃ = 2λ

H , γ̃ = 2γ
H

Initialize:W0=U0=0, Y0=0, µ0=0.1, ρ=1.1, k= 0

While not converged do

Wk+1 = argmin
W

ϑ(W,Uk,Yk, µk)

Uk+1 = argmin
W

ϑ(Wk+1,U,Yk, µk)

Yk+1=Yk+µk(Wk+1−Uk+1)

µk+1=ρµk

k = k + 1

End While

Output Wk

3.3 Illumination Estimation

Given the learned matrix W and a test image It with its fea-
ture vector xt ∈ Rd, we compute the score for each SM can-
didate method ψj by the prediction function gj(xt) = wT

j xt.
Then the SM methods are re-ordered in the descending
order of the predicted scores as ψq1 ≻ ψq2 ≻ ... ≻ ψqM

such that gq1(xt) > gq2(xt) > ... > gqM (xt). Based on the
ranking list, we can estimate the illumination value of the
test image It using two strategies.

(1) Select the optimal SM method. According to the
predicted SM methods ranking list, the optimal method is
selected as the final estimation method for the test image.
The estimated illumination is computed as:

at = zt,q1 = ψq1(It). (20)

(2) Combine the top k SM methods (method denoted
as RCC C). Another strategy is combining the illumination
values estimated by the top k SM methods using simple
weighted average. In order to simplify the weight selection,
we use the top 3 SM method to compute the final estimate
as:

at = αẑt,q1 + βẑt,q2 + (1− α− β)ẑt,q3 (21)

where ẑt,qk ∈ [r, g, b]T (r = R/(R + G + B), g = G/(R +
G+B), g = 1− r− b) is normalized 3D chromaticity values
of the estimate zt,qk=ψqk(It) and α, β ∈ [0, 1]. The optimal
values of α, β are determined by a simple exhaustive search
method on a training set.

3.4 Feature Extraction

Feature (xi ∈ Rd) extraction is an important step for the
proposed RCC. Following Li [23], we design xi ∈ Rd

including two kinds of features, namely a low-level-initial-
estimate feature and a high-level-scene-content feature.

(1) Low-Level-Initial-Estimate Feature
For the low-level feature, we use a feature vector encod-

ing the initial illumination estimates obtained from the can-
didate SM methods ψ = {ψ1, ψ2, ..., ψM}. These estimates
are low-level statistics of the colors. They can be viewed
as the moments of color distribution [36]. In addition, the
distribution of these initial estimates can reflect the relation-
ship among different candidate methods in the illumination
chromaticity space. For an image I , the estimate in RGB
color space using the SM method ψj is ψj(I) ∈ (R,G,B)T .
We transform ψj(I) from RGB space to the r-g chromaticity
space ψrg

j (I) ∈ (r, g)T based on r = R/(R + G + B), g =
G/(R+G+B), then concatenate these estimated illumina-
tion chromaticities as the low-level-initial-estimate feature
vector, shown as [ψrg

1 (I), ψrg
2 (I), ..., ψrg

M (I)]T ∈ R2×M .
(2) High-Level-Scene-Content Feature
High-level information about the scene content is used

as a cue for illumination estimation in [5], [18]. Images of the
same scene category (e.g., indoor versus outdoor) tend to be
taken under similar lighting conditions, so knowledge of the
scene category can be exploited for illumination estimation
[44], [45], [46]. Li’s evaluations [23] show that two kinds
of features, Weibull feature [60] and content-related feature
[43], have high correlations to illumination estimation.

The Weibull feature is proposed by Geusebroek and
Smeulders [60] as a texture descriptor. It correlates well with
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the image scene types (such as indoor/outdoor). They [60]
find that the distribution of edge responses in an image can
be modeled by fitting them with a two-parameter integrated
Weibull distribution, as

wb(z) = ζ exp

(
− 1

φ

∣∣∣ z
ω

∣∣∣φ) , (22)

where z denotes the edge responses from a single channel to
the Gaussian derivative filter, ζ is a normalization constant,
ω > 0 is the scale parameter of the distribution representing
the image contrast, and φ > 0 is the shape parameter
determining the grain size. The same as the work [18], the
Weibull parameters < φ,ω > for each channel in the 3-
d opponent color space (O1, O2, O3)

1 [61] are combined
to form a 6-d feature vector. For obtaining more details,
we divide an image into right-half, left-half, top-half, and
bottom-half sub-images and compute the Weibull features
of each sub-image respectively resulting in a 24-d feature
vector.

Bianco et al [43] divide the content-related feature for il-
lumination estimation into two groups: general-purpose fea-
tures and problem-dependent features. The general-purpose
features include a color histogram (27 dimensions), an edge
direction histogram (18 dimensions), an edge strengths his-
togram (5 dimensions), statistics on the wavelet coefficients
(20 dimensions), and color moments (6 dimensions). The
problem-dependent features include the number of differ-
ent colors (1 dimensions), the clipped color components
(8 dimensions), and the cast indexes (2 dimensions). For
each image Ii, we can concatenate these values into an 87-d
feature vector.

4 EXPERIMENTS

This section evaluates the proposed RCC on two widely-
used real-world image sets and gives ablation analysis on
experimental results.

4.1 Experimental Setting

(1) SM candidate set construction
The SM candidate set ψ = {ψ1, ψ2, ..., ψM} is key for

RCC. To construct the SM candidate set ψ, the general
Grey Edge framework [10] is used to generate different SM
methods systematically with different parameter settings.
The Grey Edge framework integrates derivatives of different
orders and scales, as well as the Minkowski-norm, as(∫ ∣∣∣∣∂mfσ(x)

∂xm

∣∣∣∣pdx)1/p

= κem,p,σ, (23)

where fσ(x) = f(x) ⊗ Gσ denotes convolution of the
image f(x) = [fR(x), fG(x), fB(x)]

T (RGB color values at
spatial coordinate x) with a Gaussian filter Gσ of standard
deviation σ, p is the Minkowski-norm value, κ is a scaling,
and em,p,σ is the resulting illumination estimate.

The Grey Edge framework can generate different SM
methods with different selections of m, p, σ. The parameter
selection for constructing ψ should follow two principles:
diversity and representativeness. (1) Diversity. In order to

1O1 = R−G√
2

, O2 = R+G−2B√
6

, O3 = R+B+G√
3

Fig. 2. Red points are the five representative parameter groups in <
p, σ >.

generate enough diverse SM methods for constructing ψ,
we set m= 0, 1, 2 to cover 0-, 1- and 2-order derivative
image structures. For each m, the ranges of p and σ are
set as p= {1, 4, 7,...,31} and σ= {1, 4, 7,..., 31}, deriving a
SM pool with 363 different SM methods. (2) Representa-
tiveness. Since too many SM methods in ψ will result in the
difficulty of training the RCC model, it is not reasonable to
use all the 363 SM methods to compose the candidate set
ψ. Considering the diversity and representativeness of ψ,
the center of the parameter space < p, σ >(< p, σ >=<
16, 16 > ) and four proximal centers of four subspaces (i.e.
< p, σ >= {< 7, 7 >,< 7, 25 >,< 25, 7 >,< 25, 25 >}), as
the red points shown in Fig.2, are selected for each m, which
generates 15 representative SM methods to compose the set
ψ. Although this fixed parameter setting scheme is simple,
it makes RCC more efficient and practical for real ISPs.

(2) Error measurement

The angular error ang(ai, ei) defined in (2) is used for
evaluating illumination estimation methods. For an image
set, the mean, median, trimean [62], best-25% (B-25%) and
worst-25% (W-25%) errors are used to measure the perfor-
mance of each method on this set. The worst-25% (or best-
25%) indicates the mean angular error of the largest (or
smallest) 25% of the angular errors on the test images [34].

The proposed RCC is comprehensively compared with
nearly 30 prevailing illumination estimation methods from
both SM and LM categories. For the SM category, we use
GW [9], MaxRGB [8], SoG [24], GE (widely-used parame-
ter settingsm, p, σ= {(0, 13, 2), (1, 1, 6), (2, 15)} as GE0,13,2,
GE1,1,6, GE2,1,5) [10], RM [26], GP [28], LCD [29], QU [7].
For the shallow LM category, we use BCC [12], NN [32],
SVR [11] , SSS [34] , GM [22], DGM [35], CMM [36], SF [37],
CCC [38], FFCC [39], ECC [41], MC [5], NIS [18], IC [43],
IO [44], SG [45], HVI [46]. In addition, most recent deep
LM methods, including CNNM [13], FC4 [15], DS-net [16],
C-CNN [17], IGTN [6], GLCC [47] are also used for the eval-
uation. Some deep LM methods, such as TCN [48], MH [49]
and MDN [50], are not included in the experiments because
they need images of the same scene from multiple cam-
eras. We have implemented the proposed RCC method in
Matlab. The optimal parameters λ ∈ {0.0001, 0.001, 0.1, 1}
and γ ∈ {0.0001, 0.001, 0.1, 1} are selected through 3-fold
cross validation on the training set in each of the following
experiments.
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TABLE 1
Performance comparison on the Gehler-Shi image set.

Category Subcategory Method Mean Median Trimean B-25% W-25%

SM /

DN [23] 9.24 4.80 6.68 1.43 24.0
GW [9] 4.72 3.63 3.93 0.80 10.5

SoG [24] 6.35 4.48 5.20 0.51 15.0
MaxRGB [8] 10.2 9.15 9.48 1.45 20.5
GE0,13,2 [10] 6.28 3.90 4.76 0.50 15.8
GE1,1,6 [10] 4.15 3.28 3.54 0.95 8.73
GE2,1,5 [10] 4.19 3.35 3.62 1.05 8.59

RM [26] 4.8 2.7 – – –
GP [28] 4.6 3.1 – – –

LCD [29] 3.52 2.14 2.47 0.50 8.74
QU [7] 3.46 2.23 – – –

LM

Shallow

NN [32] 5.13 3.77 4.06 1.12 11.5
SVR [11] 4.08 3.23 3.35 0.72 9.03
SSS [34] 3.96 3.24 3.46 1.52 7.61
GM [22] 5.96 3.98 4.53 0.83 14.3
BCC [31] 4.82 3.46 3.88 1.26 10.49
NIS [18] 4.40 3.18 3.49 0.54 10.3
IC [42] 3.87 2.83 3.07 0.36 9.29
IO [44] 5.18 3.55 4.00 0.65 12.4
SG [45] 4.49 3.09 3.45 0.56 10.6

HVI [46] 4.31 3.06 3.38 0.80 9.86
MC [5] 3.25 2.20 2.55 0.30 8.13
SF [37] 2.45 1.65 1.75 0.38 5.87

FFCC# [39] 2.91 1.98 2.25 0.65 6.86
ECC [41] 2.89 2.27 2.42 0.82 5.07

Deep

CNNM [13] 2.63 1.89 – – –
FC4 [15] 1.65 1.18 1.27 0.38 3.78

C-CNN [17] 2.16 1.47 1.61 0.37 5.12
DS-net [16] 1.90 1.12 1.33 0.31 4.84
IGTN [6] 1.58 0.92 – 0.28 3.70

GLCC [47] 1.44 0.92 1.04 0.27 3.48

Our Ranking RCC 2.53 1.30 1.54 0.14 6.91
RCC C 2.37 1.20 1.42 0.22 6.66

4.2 Results on Gehler-Shi Set

The Gehler-Shi image set originally provided by Gehler
et al. [31] contains 568 images taken with two cameras
(Canon 5D and Canon1D). Shi et al. [19] further repro-
cess the raw data in this set and create linear (gamma=1)
almost-raw 12-bit Portable Network Graphics (PNG) format
images. To reduce the correlations between neighboring
images in the set, uncorrelated threefold cross validation
provided by Li et al. [23] is used instead of the random
threefold cross validation in this set. The ‘Do Nothing’
(DN) method in this experiment uses the white points
provided by Shi [5] for the images obtained from the Canon
5D and Canon1D cameras as [1/1.6976, 1/0.92971/1.0237]
and [1/2.2245581/0.9286621/1.164364]. The experimental
results are shown in Table 1. The FFCC in Table 1 (denoted
as FFCC#) uses uncorrelated threefold cross validation [23],
rather than the random 3-fold cross validation in [39], by
removing the high correlations among images.

As illustrated in Table 1, both RCC and RCC C outper-
form all the SM methods and shallow LM methods in terms
of median, trimean errors. Especially, compared with NIS,
the mean, median, trimean errors of RCC are reduced by
more than 40%, which indicates that the ranking strategy
is more effective than the exclusively classification. Com-
pared with the deep LM methods, according to the most
important median and trimean errors [63], the proposed
RCC C outperforms both CNNM and C-CNN, and achieves
comparable performance to both FC4 and DS-net methods.
It is worth noting that most of the deep LM methods in Table

1 use random cross-validation settings which inevitably
result in a performance gain due to the high correlations in
this image set. According to Table 1, both RCC and RCC C
achieve much lower angular errors using the proposed
ranking model and SM methods, which also indicates that
it’s possible to obtain comparable performance to (even
better performance than) deep LM methods using an ef-
fective ranking model with several simple SM methods.
In addition, RCC needs much a lower computational cost
and much less training samples than deep LM methods.
The fact that RCC C achieves better performance than RCC
indicates that the simple linear fusion of top 3 SM methods
can effectively improve the stableness and accuracy of the
RCC model.

4.3 Results on NUS Set

The NUS set is composed of 1736 high-quality images
produced by Cheng et al. [29]. These images are taken using
8 commercial cameras (Canon 1DS Mark III, Canon 600D,
Fujifilm XM1, Nikon D5200, Olympus EPL6, Panasonic GX1,
Samsung NX 2000, Sony 57). For each camera, over 200 im-
ages including both indoor and outdoor scenes are captured.
The same as in the Gehler-Shi set, a color checker is used to
measure the ground truth illumination for each image. In
this experiment, for each camera, LM methods are trained
and tested separately using a 3-fold cross validation. Then
the average performance of 8 cameras are reported in Table
2.
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TABLE 2
Performance comparison on the NUS image set.

Category Subcategory Method Mean Median Trimean B-25% W-25%

SM /

DN [23] 19.58 19.57 19.48 9.91 22.71
GW [9] 4.14 3.20 3.39 0.90 9.00

SoG [24] 3.40 2.57 2.73 0.77 7.41
MaxRGB [8] 10.62 10.58 10.19 1.86 19.45
GE0,13,2 [10] 4.04 2.45 2.78 0.37 10.49
GE1,1,6 [10] 6.83 5.45 5.82 3.47 12.52
GE2,1,5 [10] 9.99 9.40 9.55 7.05 13.83

QU [7] 3.00 2.25 – – –

LM

Shallow

CMM [36] 3.05 1.90 2.13 0.65 7.41
GM [22] 7.70 6.71 6.90 2.51 14.05

DGM [35] 8.43 7.05 7.37 2.41 16.08
SVR [11] 2.91 2.18 2.33 0.68 6.39
BCC [31] 3.67 2.73 2.91 0.82 8.21
NIS [18] 3.71 2.60 2.84 0.79 8.47
IC [42] 7.20 5.96 6.28 2.20 13.61

SSS [34] 3.11 2.49 2.60 2.84 0.79
SSS(GP) [34] 2.96 2.33 2.47 0.80 6.18

SF [37] 2.92 2.04 2.24 0.62 6.61
CCC [38] 2.38 1.48 1.69 0.45 5.85
FFCC [39] 1.99 1.31 1.43 0.35 4.75

Deep

FC4 [15] 2.23 1.57 1.72 0.47 5.15
C-CNN [17] 2.41 2.15 – – 4.16
DS-net [16] 2.24 1.46 1.68 0.48 6.08
IGTN [6] 1.85 1.24 – 0.36 4.58

GLCC [47] 1.84 1.31 1.42 0.41 4.20

Our Ranking RCC 2.70 1.81 2.03 0.50 6.38
RCC C 2.62 1.43 1.76 0.52 6.06

According to Table 2, the proposed RCC and RCC C
achieve much better performance than all the SM methods.
RCC C outperforms all the shallow LM methods except
FFCC. The CCC and FFCC treat the illumination estimation
as an illumination classification problem on a certain image
set. Since the illumination set of an image set in the two
methods is a finite set, these illumination classification-
based methods easily overfit to the image set. In addition,
as a general framework, the proposed RCC can also include
CCC and FFCC into the candidate set to improve the per-
formance, which is discussed in Section 5.6. Compared with
the deep LM methods, the proposed RCC C outperforms
C-CNN, FC4 and DS-net, and achieves comparable perfor-
mance to GLCC, but its model is much smaller and more
efficient than deep CNN models.

4.4 Visual Comparison
Besides quantitative analysis above, this section gives some
visual comparisons among different methods. Five images
(2 indoor images and 3 outdoor images) from the image sets
are selected out as examples. For each image, we correct
the image colors under canonical light sources using the
diagonal transformation [64] according to the estimated
illumination by 9 methods, including GW [9], MaxRGB [8],
GE (GE0,13,2, GE1,1,6, and GE2,1,5) [10], SVR [11], CNNM
[13], RCC and RCC C. The corrected results are shown in
Fig. 3, in which the ideal results using ground truth (GT)
are also given for comparison. According to Fig. 3, we
can find that: (1) Some of the 9 competitors achieve better
results for indoor images, while some obtain better results
for outdoor ones. In contrast, RCC and RCC C always out-
perform all the other methods on both indoor and outdoor
images, which further proves their stableness. (2) The last
two outdoor images contain few reflectance surfaces, which

makes it more difficult to estimate illumination accurately.
Consequently, most methods have not obtained reasonable
results, but both RCC and RCC C still achieve much lower
angular errors and good corrected results. It benefits from
the underlying ranking strategy that adaptively selects op-
timal SM methods for each image so as to avoid most
unreasonable estimates.

5 ANALYSIS AND DISCUSSION

This section gives out more analysis of the experimental
results. In addition, the performance of the proposed RCC
with different settings is also analyzed.

5.1 Performance with Optimal SM Method

The immediate question for RCC is whether the ranking
strategy is reasonable and what its performance upper
bound is. To answer these questions, we consider the sit-
uation in which the kth best SM method is always chosen
for each input image. Fig. 4 illustrates the median angular
error for different k. From the curves in Fig. 4, we obtain the
following observations:

• If each image is always assigned the best (top 1) SM
method, the median errors on both the sets are 0.44
and 1.06 degrees, which are much lower than the
errors of the SOTA methods including those deep
LM methods. It implies that it is effective to use a
ranking scheme on the SM methods to achieve good
performance for color constancy.

• Even though each image is assigned the top 4 or top
5 SM method, the performance is still comparable to
that of most deep LM methods. It further indicates
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Fig. 3. Examples of images that are corrected under canonical light sources according to the estimated illumination by corresponding methods: (A)
original image, (B) GW, (C) MaxRGB, (D) GE0,13,2, (E) GE1,1,6, (F)GE2,1,5, (G) SVR, (H)CNNM, (I) RCC, (J)RCC C, (K) GT. The corresponding
angular errors are shown in the lower right corner of the images.
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Fig. 4. Performance changes with the top-k SM method assignment: (A)
on the Gehler-Shi set, (B) on the NUS set.

that the proposed ranking strategy is more reason-
able than exclusively selecting the best SM method
for an image.

• Compared with the ideal situation that each image
is assigned the top 1 SM, the current RCC still has
a performance room to improve. A more elaborated
ranking model for RCC will be studied in the future.

5.2 Feature Selection

Feature selection is important for the proposed RCC. It is not
known which features of an image are best for the selection
of SM methods. The ℓ21-norm constraints embedded in the
proposed RCC ensure that effective features can be found
automatically. The feature selection in RCC is based on
grouped sparsity with ℓ21-norm on W, in which the ℓ2-
norm of each row of W is the weight of the corresponding
feature. If the ℓ2-norm of a row is equal or approximate
to 0, the corresponding feature will be non-significant in the
model. We visualize the matrix W of RCC for the two image
sets, as illustrated in Fig. 5. We can find:

• The feature selection in RCC discards some useless
features so as to improve the accuracy and general-
ization of the ranking model.

• The visualizations on both the image sets (including
8 subsets of the NUS set) in Fig. 5 show that the
distributions of ℓ2-norm of entries in W on differ-
ent image sets are highly similar. It shows that the
low-level-initial-estimate features and the majority of
high-level Weibull features have much higher corre-
lations to the SM method selection. Because the low-
level-initial-estimate features represent the relations
among estimates using the SM candidates and the
Weibull features pay more attention to the textures
of an image.

• Based on the feature selection, we can add more new
visual features into RCC in the future to explore more
correlated features for color constancy.

In addition, we compare the performance of RCC and
RCC C with and without feature selection as shown in Table
3. It also shows the effectiveness of feature selection that
reduces the median and trimean errors by more than 0.4
degrees on each set. The feature selection not only reduces
the effects of useless features, but it also reduces the model
size so as to improve the efficiency of training and testing.

Fig. 5. The visualization of the W in RCC. (A) Gehler-Shi set, (B)-(I) 8
subsets of the NUS set.

TABLE 3
Performance comparison between RCC/RCC C with and without

feature selection.

Data set Methods Feature Mean Median Trimean
Selection

Gehler-Shi
RCC ! 2.53 1.30 1.54

# 2.87 1.77 1.99

RCC C ! 2.37 1.20 1.42
# 2.52 1.62 1.83

NUS
RCC ! 2.70 1.81 2.03

# 3.86 2.43 2.71

RCC C ! 2.62 1.43 1.76
# 4.10 2.15 2.69

Fig. 6. Experimental results with limited training samples: (A)(B) median
and mean errors change as the functions of p on the Gehler-Shi set;
(C)(D) median and mean errors change as the functions of p the on
NUS set.

5.3 Performance with Limited Training Samples

One of the advantages of RCC is that it can be trained with
a limited number of labelled samples, which benefits from
taking advantage of the correlations among different score
functions with a low rank constraint as well as the feature
selection. This section describes the experiments in which
the number of training images is gradually decreased.

The cross validation settings on both the image sets are
the same as those in Section 4. In each cross validation, the
test set is fixed, but p% samples are randomly selected from
the training set to comprise a new training set. The new
training set is used to train the SVR, NN, NIS, and RCC
methods. The procedure is repeated 3 times and the average
performance is the final result for each method. Fig. 6 shows
the median and mean errors with different values of p on
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two image sets. We find that:

• As the number of training samples is reduced, the
median and mean errors of SVR, NN and NIS are
increased rapidly on both the sets. The median errors
of SVR, NN and NIS are increased by 55.1%, 48.9%,
and 33.9% as p is decreased on the Gehler-Shi set. The
median errors of SVR and NN are increased by 25.9%
and 59.1% on the NUS set. In contrast, the median
errors of RCC on both the sets are increased by only
16.9% and 17.6%, which are much lower than those
of SVR, NN and NIS. Even when using only 10%
training samples, the median errors of RCC still can
achieve 1.52 and 2.13 degrees, which are much lower
than most LM methods using 100% of the training
samples, as shown in Tables 1 and 2. These results
on both the sets verify the robustness of the proposed
RCC when only a few training samples are used.

• Since the deep LM methods [13], [15], [16], [17] can-
not be well trained on so small training sets, we use a
shallow neural network architecture in [27] instead.
The NN method has much fewer parameters than
deep neural networks, but even so, it cannot produce
a reasonable model when p < 40 and p < 50 on
the two sets. It shows that the neural networks-based
methods, either deep or shallow architecture, cannot
be well trained if the number of training samples is
small.

• The good robustness of RCC to only a few training
samples is a result of the lower model complexity
and of specific constraints embedded in the objective
function. The model parameter size of RCC is much
smaller than the model size of deep LM methods as
well as many shallow LM methods, as discussed in
detail in Section 5.5. In addition, both the low rank
∥W∥∗ and grouped sparsity ∥W∥21 constraints in (7)
take advantage of the correlation among prediction
functions so as to improve the learning ability with a
few training samples.

5.4 Comparisons among Ranking, Classification and
Regression
RCC ranks the candidate SM methods for each image. This
is in contrast with NIS, which uses a classifier to select
the most appropriate SM for each image. In this experi-
ment, the classification strategy and the ranking strategy
are compared, using a Support Vector Machine as a clas-
sifier (CSVM) with the same SM candidate set to select
an optimal SM for each image. In addition, experiments
are also carried out to assess the performance of direct
regression using the outputs of the SM methods. Based on
the outputs of all the SM candidates, i.e. the low level feature
[ψrg

1 (I), ψrg
2 (I), ..., ψrg

M (I)]T , SVR estimates the illuminate
value using regression (CSVR). For both the SVM and SVR,
the Radial Basis Function (RBF) and linear kernels as well as
corresponding parameters are selected by cross-validation
in a training set for each image set. The performance of NIS,
CSVM, CSVR, RCC, and RCC C are shown in Table 4. From
the results, we obtain the following observations:

• Both RCC and RCC C outperform CSVM on both
the image sets, thus verifying the superiority of rank-

TABLE 4
Performance comparison among ranking, classification and regression.

Data set Method Mean Median Trimean

Gehler-Shi

RCC 2.53 1.30 1.54
RCC C 2.37 1.20 1.42
NIS [18] 4.40 3.18 3.49
CSVM 2.99 1.83 1.96
CSVR 2.67 2.06 2.20

NUS

RCC 2.70 1.81 2.03
RCC C 2.62 1.43 1.76
NIS [18] 3.71 2.60 2.84
CSVM 2.96 2.08 2.35
CSVR 3.20 1.97 2.25

ing compared with classification. CSVM classifies
each image using 15 classes corresponding to 15 SM
methods. Therefore, it has to face three potential
difficulties: effective image features, limited training
set, and imbalanced training samples. Fortunately,
the proposed RCC method effectively avoids these
issues well. The feature selection embedded in RCC
selects effective ones from a number of image fea-
tures during the training procedure. The low rank
constraint in RCC takes advantage of the correlation
among different prediction functions to improve its
robustness to maintain performance if there are only
a few training samples. Furthermore, the ranking
does not assign only one label to each image but
assigns different scores for the labels, which reduces
the effect of the any imbalances in the numbers of
the training samples. Consequently, RCC achieves
much better performance than these classification-
based methods.

• The direct regression method, CSVR, has comparable
performance to CSVM, but the performance is much
lower than that of both RCC and RCC C. Since each
SM method always depends on a specific assumption
and it is difficult for an image to satisfy all the
assumptions of 15 candidate SM methods. Some SM
methods inevitably gives out inaccurate estimates
that result in inaccurate final estimate for CSVR. In
contrast, RCC C first ranks the candidate SM meth-
ods and selects the top 3 SM methods to compute
the final illumination using the weighted average. It
effectively discards the inaccurate estimates to obtain
more stable and accurate estimation than the direct
regression method.

5.5 Comparison with Deep LM Methods

In this section, we compare RCC with recent deep LM
methods in terms of accuracy, complexity and efficiency.

(1) Accuracy and Complexity
Fig. 7 illustrates the median angular errors and parame-

ter numbers of deep LM methods and RCC. Although both
IGTN and GLCC achieve slightly lower median errors than
RCC C, their parameter sizes reach to 5.19M and 500M
that are nearly 2,454 and 238,095 times more than that
of RCC (only (30 + 24 + 87) × 15 = 2115 parameters).
Even the lightest CNN-based method FC4 still has 1.73M
parameters, nearly 1000 times more than RCC, but it only
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Fig. 7. Model complexity versus median angular error: (A) Gehler-Shi
set, (B) NUS set

TABLE 5
Computation time (including feature extraction) in seconds for FC4 and

RCC.

Training Test (per image) CPU GPU

FC4 99,000 (761times) 0.23(2.6times) ! !

309,600 (2,381times) 0.75 (8.3times) ! #

RCC 130 0.09 ! #

achieves comparable median error to RCC C on the Gehler-
Shi set and a larger median error than RCC C on the NUS
set. So large scale of parameters in the deep LM methods
need high-performance computing and storage resources.
Conversely, RCC with only 2115 parameters can be trained
and deployed efficiently on low-power terminal devices.

(2) Efficiency
To give an idea of the computational costs of the pro-

posed RCC, we compare it to the lightest CNN-based
method FC4. Table 5 lists the training and test times for
both RCC and FC4 on the Gehler-Shi set using one cross-
validation procedure with 379 training images and 179 test
images. RCC is run using a PC with Intel Core i7-7700 at
3.6GHz and 8 GB RAM. The FC4 is trained and tested by
using a NVIDIA GeForce RTX 3090 GPU. To extend the
comparisons, we also test FC4 using the same CUP as RCC
without a GPU. Since RCC needs to extract features, the
feature extraction time per image in RCC is also given in
Table 6. From Tables 5 and 6, we find that:

• Even though FC4 is a light CNN-based method,
it still takes 110s/epoch and 344s/epoch with and
without GPU, respectively. The code provided by
[15], [65] suggests 900 epochs for training a reason-
able FC4 model. Consequently, the training time for
FC4 with and without GPU is 99,000s (more than 1
day) and 309,600s (more than 3.5 days); the test time
for FC4 in the two situations is 0.23s and 0.75s. The
training and test times (including feature extraction)
of RCC are only 130s and 0.09s. If only using CPU,
FC4 should spend 2,381 and 8.3 times the training
time and test time of RCC. It indicates that the com-
plex deep LM methods cannot be directly deployed
and run on a low-resource real-time device.

• The test time per image for RCC without feature
extraction is only 3 × 10−6s. By adding the running
time of feature extraction, the inference time per
image for RCC requires only 0.09s.

TABLE 6
Feature extraction time in seconds per image.

Low-level Feature High-level Feature
0.06 0.03

TABLE 7
Performance of RCC with different candidate sets.

Data set Methods Mean Median Trimean

Gehler-Shi

RCC# 2.46 1.27 1.48
RCC 2.53 1.30 1.54

RCC C# 2.35 1.13 1.41
RCC C 2.37 1.20 1.42

NUS

RCC# 2.65 1.78 1.96
RCC 2.70 1.81 2.03

RCC C# 2.48 1.28 1.64
RCC C 2.66 1.58 1.91

5.6 Performance with Shallow LM Candidates

The candidate setψ = {ψ1, ψ2, ..., ψM} in RCC is composed
of SM methods, which are simple and have no training
stage. In fact, some efficient shallow LM methods can also
be included in ψ. This experiment adds three effective
shallow LM methods, including SVR, SF, and FFCC, into
the candidate set ψ = {ψ1, ψ2, ..., ψM}. The shallow LM
methods are trained using the training set in each cross-
validation. Table 7 shows the results of RCC with new
candidate set ψ (denoted as RCC# and RCC C#), using the
same experimental settings on the two image sets. For com-
parison, results of RCC and RCC C are also listed in Table 7.
Both RCC# and RCC C# obtain performance improvements
on the two sets, compared with RCC and RCC C. This
implies that including better candidate methods into ψ can
improve the performance of RCC. On the Gehler-Shi set,
the median error of RCC C# even achieves 1.13 degrees,
which is slightly lower than the median error of RCC C
and outperforms all the methods listed in Table 1 except
IGTN and GLCC. As a general framework, the proposed
RCC method can be easily extended to incorporate new SM
and LM methods that might be proposed in the future.

5.7 Performance across Image Sets

Generalization is important for a color constancy method.
It is expensive and time-consuming if we always have to
re-train a model from the ground up for any new imaging
system. This experiment tests the generalization of RCC us-
ing images from different cameras for training and testing.
We first use the NUS set as a training set and the Gehler-Shi
set as a test set, then swap them. The performance of RCC
and RCC C methods crossing image sets is listed in Table 8.
For comparison, the representative LM method SVR [11] is
also tested crossing the image sets as a baseline. From Table
8, we obtain the following observations:

• The proposed RCC has much better generalization
than SVR. When using the NUS as a training set and
the Gehler-Shi as a test set, RCC and RCC C still
achieve 1.77 and 1.68 degrees median errors, while
the median error of SVR is 7.66 degrees. When using
the Gehler-Shi as the training set and the NUS as the
test set, the median errors of RCC and RCC C are



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 8
Performance of different methods across image sets

Training set Test Set Methods Mean Median Trimean

NUS Gehler-Shi
RCC 3.08 1.77 2.11

RCC C 2.99 1.68 2.00
SVR [11] 8.87 7.66 7.80

Gehler-Shi NUS
RCC 3.83 2.40 2.77

RCC C 3.29 2.15 2.49
SVR [11] 8.08 6.75 6.90

2.40 and 2.15 degrees, which are much lower than
SVR’s median error 6.75 degrees. The results show
that SVR cannot learns a reasonable illumination pre-
diction model due to the data distribution difference
between the two image sets. However, RCC and
RCC C still perform well when crossing from one
image set to the other. According to Tables 1, 2, and 8,
on both the image sets, excepting SF, CCC and FFCC,
RCC C with crossing the image sets still outperforms
all the SM and shallow LM methods that are trained
and tested on the same image set.

• The performance reductions of RCC are much lower
than those of SVR. On comparing the performance
of RCC and RCC C trained and tested within the
same set in Tables 1 and 2, their median errors using
crossing sets settings only increase by 0.44 and 0.46
degrees on the Gehler-Shi set. The two errors also
only increase by 0.59 and 0.72 degrees on the NUS
set. In contrast, the median errors of SVR using
different settings increase by 4.43 and 4.57 degrees
on both the sets. These increases are nearly 10 times
those of RCC and RCC C. The good generalization
embedded in the proposed RCC method makes it
easy to transfer from one ISP to another with few,
even no, additional training samples.

• The underlying reasons for the good generalization
of RCC can be summarized as two aspects: (1) Most
LM methods, such as SVR, NN, BCC, directly predict
illumination using visual features. In the crossing
sets setting, the feature distribution gap between
different sets inevitably results in a large perfor-
mance reduction. Different from direct illumination
prediction, RCC selects the SM method from the can-
didate set and applies the selected SM to test images,
which effectively reduces the sensitivity to feature
distribution differences. (2) The images in the two
sets are taken using different ISPs. Nearly all the LM
methods use color features that are highly correlated
to ISPs, while most of the high-level visual features
used in RCC are relatively stable across ISPs, which
further improves the generalizations and robustness
of RCC.

6 EXTENDED RCC WITHOUT GROUND TRUTH IL-
LUMINATION

In the training stage of RCC, the ranking list for each
training sample is computed based on its ground truth
illumination. However, it is costly and time-consuming to
measure the ground truth illumination of each image ac-
curately. In order to reduce the dependence on the ground

truth, we further extend the proposed RCC to a new ranking
model without ground truth illumination (RCC NO). The
RCC NO learns a ranking model using simple binary pref-
erence annotations provided by untrained annotators rather
than the full ranking list based on ground truth illumination.

6.1 Formulation of RCC NO
RCC NO does not have a full ranking list for each im-
age because of the lack of ground truth. It is formulated
as: Given N training images I1, ..., IN with corresponding
feature vectors x1, ..., xN and a set of M candidate SM
methods ψ = {ψ1, ψ2, ..., ψM}, each image is corrected as
M images under canonical illumination using the estimated
illumination by the M SM methods in ψ. Then Q untrained
annotators are asked to select at most O (O < M ) images
that have better white balancing according to their personal
visual perceptions, as shown in Fig. 8. Consequently, we
obtain a binary label matrix A ∈ {0, 1}N×Q×M instead of
the SM ranking list Li in RCC. The element Ai,q,k represents
the tag of the qth annotator on the kth SM method for the
ith training image (1: the annotator prefers this SM method
for this image, 0: otherwise). Considering Q annotators, the
error εj,k(xi) in (3), which measures the error in ranking ψj

and ψk for image Ii, is rewritten as:

εj,k(xi) =
1

Q

Q∑
q=1

1Ai
(Ai,q,j ̸= Ai,q,k)δ(gj(xi)− gk(xi)),

(24)
where 1Ai

(Ai,q,j ̸= Ai,q,k) is an indicator function defined
as:

1Ai(Ai,q,j ̸= Ai,q,k) =

{
1, Ai,q,j ̸= Ai,q,k

0, Ai,q,j=Ai,q,k
. (25)

The overall loss function J(W) in (5) of N training images
labeled by Q annotators can be rewritten as:

J(W)= 1
NQ

N∑
i=1

Q∑
q=1

M∑
j,k

1Ai(Ai,q,j ̸=Ai,q,k)

·δ((Ai,q,j−Ai,q,k)(w
T
j xi−wT

k xi)).

(26)

We substitute the new loss function J(W) into (8) and
optimize it using Algorithm 1 in Section 3.2.

Compared with RCC, RCC NO has the following ad-
vantages:

• RCC NO does not need accurate illumination values
of training samples. It is much easier and more
efficient to collect more annotated training samples.

• RCC NO does not require color checker in the train-
ing images for illumination measurement. A training
set can be constructed by taking images of different
scenes or by collecting images from the internet.

• It is more reasonable to evaluate a SM method using
human visual perception rather than the mathemati-
cal angular error [62].

6.2 Training of RCC NO
The training procedure of RCC NO can be divided in two
steps: (1) training sample annotation, and (2) model training.

(1) Training sample annotation. For RCC NO, we keep
the same candidate set ψ as that in Section 4.1. Three
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Fig. 8. An annotation system for RCC NO.

students in our lab without color constancy background
knowledge in our lab are asked to annotate images in the
two image sets. Fig. 8 illustrates the annotation system
of RCC NO. For each image, we adjust the image colors
under canonical light sources according to the estimated
illumination by each of the 15 candidate SM methods with
the diagonal transformation [64]. The three images that have
the best white balancing are selected out by an annotator
according to his personal perception. The labels of the
corresponding SM methods are set as 1, otherwise 0.

(2) Model training. After sample annotation, we can
obtain the binary label matrix A ∈ {0, 1}N×Q×M for N
training images I1, ..., IN with corresponding feature vec-
tors x1, ..., xN and the SM method setψ = {ψ1, ψ2, ..., ψM}.
Then we optimize W in (8) for the RCC NO model using
Algorithm 1 by substituting the new loss function J(W) in
(26) into (8).

6.3 Results of RCC NO

We also test RCC NO on both the Gehler-Shi and the NUS
image sets, and compare it with RCC and other leading
methods. The combining strategy in (21) is also used in
RCC NO and denoted as RCC NO C. The experimental
settings are the same as those in Section 4. The results are
given in Table 9. According to the comparison in Table 9, we
find that:

• Both RCC NO and RCC NO C outperform all the
SM and most of the shallow LM methods on the
two image sets.This indicates that good performance
can be obtained using an effective ranking model
without ground truth illumination. Consequently, it
makes collecting training samples for an ISP much
easier.

• The performance of RCC NO and RCC NO C is
lower than those of RCC and RCC C on the two
image sets. This implies that the binary annotation
does lose some useful relationship information. The
inconsistency between the human annotation and
raking list based on ground truth illumination also
pulls the performance of RCC NO down.

• According to the differences between RCC and
RCC NO, the human white balancing preferences
are slightly different from mathematical angular er-

TABLE 9
Performance comparison between RCC NO and RCC on two image

sets.

Data set Methods Mean Median Trimean

Gehler-Shi

RCC NO 2.94 1.61 1.88
RCC 2.53 1.30 1.54

RCC NO C 2.51 1.31 1.52
RCC C 2.37 1.20 1.42

NUS

RCC NO 4.38 2.88 3.16
RCC 2.70 1.81 2.03

RCC NO C 4.04 2.04 2.64
RCC C 2.62 1.43 1.76

rors. Therefore, RCC NO can be easily extended to
the personalized color constancy in the future.

7 CONCLUSIONS

This paper presents a novel ranking-based color constancy
method that achieves comparable performance to deep LM
methods with much lower model complexity. The main idea
is that, if we can select the optimal method from a set of
SM methods for each image, we can achieve significant
performance improvements. A novel ranking-based color
constancy method is proposed to take advantages of label
ranking scheme to predict the order of the candidate SM
methods for each image. In order to reduce dependence
on a large number of training samples and improve the
efficiency, we introduce the low-rank constraint to control
the model complexity and the group sparse constraint for
feature selection. For furthermore removing the require-
ments of illumination measurements for color constancy,
RCC is extended to a novel ranking-based method without
ground truth illumination (RCC NO). A large number of
experimental results show that the simple RCC achieves
comparable (even better) performance to most complex
deep LM methods with much lower computational costs
and fewer training samples. The work in this paper indicates
that designing an effective and practical ranking strategy
using simple SM methods can achieve better color constancy
performance.

ACKNOWLEDGMENTS

This work is partly supported by the National Key R&D
Plan (No. 2020AAA0106800), the Natural Science Founda-
tion of China (Nos.62122086, U1936204). Bing Li is also sup-
ported by Youth Innovation Promotion Association, CAS.

REFERENCES

[1] K. Van De Sande, T. Gevers, and C. Snoek, “Evaluating color
descriptors for object and scene recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1582–
1596, 2009.

[2] K. Barnard, V. Cardei, and B. Funt, “A comparison of compu-
tational color constancy algorithms. i: Methodology and experi-
ments with synthesized data,” IEEE transactions on Image Process-
ing, vol. 11, no. 9, pp. 972–984, 2002.

[3] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of
computational color constancy algorithms. ii. experiments with
image data,” IEEE transactions on Image Processing, vol. 11, no. 9,
pp. 985–996, 2002.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[4] A. Gijsenij, T. Gevers, and J. Van De Weijer, “Computational color
constancy: Survey and experiments,” IEEE transactions on image
processing, vol. 20, no. 9, pp. 2475–2489, 2011.

[5] B. Li, W. Xiong, W. Hu, B. Funt, and J. Xing, “Multi-cue il-
lumination estimation via a tree-structured group joint sparse
representation,” International Journal of Computer Vision, vol. 117,
no. 1, pp. 21–47, 2016.

[6] B. Xu, J. Liu, X. Hou, B. Liu, and G. Qiu, “End-to-end illuminant
estimation based on deep metric learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3616–3625.

[7] S. Bianco and C. Cusano, “Quasi-unsupervised color constancy,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 212–12 221.

[8] E. H. Land, “The retinex theory of color vision,” Scientific american,
vol. 237, no. 6, pp. 108–129, 1977.

[9] G. Buchsbaum, “A spatial processor model for object colour per-
ception,” Journal of the Franklin institute, vol. 310, no. 1, pp. 1–26,
1980.

[10] J. Van De Weijer, T. Gevers, and A. Gijsenij, “Edge based color
constancy,” IEEE Transactions on image processing, vol. 16, no. 9, pp.
2207–2214, 2007.

[11] W. Xiong and B. Funt, “Estimating illumination chromaticity via
support vector regression,” Journal of Imaging Science and Technol-
ogy, vol. 50, no. 4, pp. 341–348, 2006.

[12] D. H. Brainard and W. T. Freeman, “Bayesian color constancy,”
JOSA A, vol. 14, no. 7, pp. 1393–1411, 1997.

[13] S. Bianco, C. Cusano, and R. Schettini, “Color constancy using
cnns,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2015, pp. 81–89.

[14] S. Bianco, C. Cusano, and R. a. Schettini, “Single and multiple
illuminant estimation using convolutional neural networks,” IEEE
Transactions on Image Processing, vol. 26, no. 9, pp. 4347–4362, 2017.

[15] Y. Hu, B. Wang, and S. Lin, “Fc4: Fully convolutional color
constancy with confidence-weighted pooling,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 4085–4094.

[16] W. Shi, C. C. Loy, and X. Tang, “Deep specialized network for
illuminant estimation,” in European conference on computer vision.
Springer, 2016, pp. 371–387.

[17] S. W. Oh and S. J. Kim, “Approaching the computational color
constancy as a classification problem through deep learning,”
Pattern Recognition, vol. 61, pp. 405–416, 2017.

[18] A. Gijsenij and T. Gevers, “Color constancy using natural image
statistics and scene semantics,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 33, no. 4, pp. 687–698, 2010.

[19] L. Shi, “Re-processed version of the gehler color constancy dataset
of 568 images,” http://www. cs. sfu. ca/˜ color/data/, 2000.

[20] F. Ciurea and B. Funt, “A large image database for color constancy
research,” in Color and Imaging Conference, vol. 2003, no. 1. Society
for Imaging Science and Technology, 2003, pp. 160–164.

[21] “Color constancy,” Website, 2022, http://colorconstancy.com/.
[22] D. A. Forsyth, “A novel algorithm for color constancy,” Interna-

tional Journal of Computer Vision, vol. 5, no. 1, pp. 5–35, 1990.
[23] B. Li, W. Xiong, W. Hu, and B. Funt, “Evaluating combinational

illumination estimation methods on real-world images,” IEEE
Transactions on Image Processing, vol. 23, no. 3, pp. 1194–1209, 2013.

[24] G. D. Finlayson and E. Trezzi, “Shades of gray and colour con-
stancy,” in Color and Imaging Conference, vol. 2004, no. 1. Society
for Imaging Science and Technology, 2004, pp. 37–41.

[25] S.-B. Gao, K.-F. Yang, C.-Y. Li, and Y.-J. Li, “Color constancy
using double-opponency,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 10, pp. 1973–1985, 2015.

[26] X.-S. Zhang, S.-B. Gao, R.-X. Li, X.-Y. Du, C.-Y. Li, and Y.-J. Li,
“A retinal mechanism inspired color constancy model,” IEEE
Transactions on Image Processing, vol. 25, no. 3, pp. 1219–1232, 2016.

[27] B. Li, D. Xu, W. Xiong, and S. Feng, “Color constancy using
achromatic surface,” Color Research & Application, vol. 35, no. 4,
pp. 304–312, 2010.

[28] K.-F. Yang, S.-B. Gao, and Y.-J. Li, “Efficient illuminant estimation
for color constancy using grey pixels,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 2254–
2263.

[29] D. Cheng, D. K. Prasad, and M. S. Brown, “Illuminant estimation
for color constancy: why spatial-domain methods work and the
role of the color distribution,” JOSA A, vol. 31, no. 5, pp. 1049–
1058, 2014.

[30] R. T. Tan, K. Nishino, and K. Ikeuchi, “Color constancy through
inverse-intensity chromaticity space,” JOSA A, vol. 21, no. 3, pp.
321–334, 2004.

[31] P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, “Bayesian
color constancy revisited,” in 2008 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[32] V. C. Cardei, B. Funt, and K. Barnard, “Estimating the scene
illumination chromaticity by using a neural network,” JOSA a,
vol. 19, no. 12, pp. 2374–2386, 2002.

[33] G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Color by corre-
lation: A simple, unifying framework for color constancy,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 11, pp. 1209–1221, 2001.

[34] A. Chakrabarti, K. Hirakawa, and T. Zickler, “Color constancy
with spatio-spectral statistics,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 34, no. 8, pp. 1509–1519, 2011.

[35] A. Gijsenij, T. Gevers, and J. Van De Weijer, “Generalized gamut
mapping using image derivative structures for color constancy,”
International Journal of Computer Vision, vol. 86, no. 2, pp. 127–139,
2010.

[36] G. D. Finlayson, “Corrected-moment illuminant estimation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 1904–1911.

[37] D. Cheng, B. Price, S. Cohen, and M. S. Brown, “Effective learning-
based illuminant estimation using simple features,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1000–1008.

[38] J. T. Barron, “Convolutional color constancy,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 379–387.

[39] J. T. Barron and Y.-T. Tsai, “Fast fourier color constancy,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 886–894.

[40] J. Vazquez-Corral, M. Vanrell, R. Baldrich, and F. Tous, “Color
constancy by category correlation,” IEEE Transactions on image
processing, vol. 21, no. 4, pp. 1997–2007, 2011.

[41] H. R. V. Joze and M. S. Drew, “Exemplar-based color constancy
and multiple illumination,” IEEE transactions on pattern analysis
and machine intelligence, vol. 36, no. 5, pp. 860–873, 2013.

[42] S. Bianco and R. Schettini, “Color constancy using faces,” in 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2012, pp. 65–72.

[43] S. Bianco, G. Ciocca, C. Cusano, and R. a. Schettini, “Automatic
color constancy algorithm selection and combination,” Pattern
recognition, vol. 43, no. 3, pp. 695–705, 2010.

[44] S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, “Improving
color constancy using indoor outdoor image classification,” IEEE
Transactions on image processing, vol. 17, no. 12, pp. 2381–2392, 2008.

[45] R. Lu, A. Gijsenij, T. Gevers, V. Nedović, D. Xu, and J.-M. Geuse-
broek, “Color constancy using 3d scene geometry,” in 2009 IEEE
12th International Conference on Computer Vision. IEEE, 2009, pp.
1749–1756.

[46] J. Van De Weijer, C. Schmid, and J. Verbeek, “Using high-level
visual information for color constancy,” in 2007 IEEE 11th Interna-
tional Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[47] Y.-C. Lo, C.-C. Chang, H.-C. Chiu, Y.-H. Huang, C.-P. Chen,
Y.-L. Chang, and K. Jou, “Clcc: Contrastive learning for color
constancy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 8053–8063.

[48] A. Abdelhamed, A. Punnappurath, and M. S. Brown, “Leveraging
the availability of two cameras for illuminant estimation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 6637–6646.

[49] D. Hernandez-Juarez, S. Parisot, B. Busam, A. Leonardis,
G. Slabaugh, and S. McDonagh, “A multi-hypothesis approach
to color constancy,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2270–2280.

[50] J. Xiao, S. Gu, and L. Zhang, “Multi-domain learning for accurate
and few-shot color constancy,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
3258–3267.
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