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Scientific thinking about the minds of humans and other animals has been transformed by 

the idea that the brain is Bayesian. A cornerstone of this idea is that agents set the balance 

between prior knowledge and incoming evidence based on how reliable or ‘precise’ these 

different sources of information are — lending the most weight to that which is most reliable. 

This concept of precision has crept into several branches of cognitive science and is a 

lynchpin of emerging ideas in computational psychiatry — where unusual beliefs or 

experiences are explained as abnormalities in how the brain estimates precision. But what 

precisely is precision? In this Primer we explain how precision has found its way into classic 

and contemporary models of perception, learning, self-awareness, and social interaction. We 

also chart how ideas around precision are beginning to change in radical ways, meaning we 

must get more precise about how precision works. 

 

Precise and imprecise percepts  

Imagine you are walking a particularly disobedient dog. After being let off the leash he leaps 

into the bushes, and you have to dive in to fetch him out. But you are not entirely sure where 

he is. You hear the sound of twigs cracking to the left, but you see the leaves shake to the 

right. Where should you jump in to catch him?  

Locating your dog based on a combination of sight and sound is an example of a 

general class of multisensory integration problems where our perceptual systems have to 

triangulate different sensory signals. In our example, the visual signal (shaking leaves to the 

right) and the auditory signal (cracking twigs to the left) both tell us something about one 

feature of the environment (the dog’s location), and so it makes sense to combine them. But 

how? A simple approach could be for our brain to average them together — if sight says 

right and sound says left, we should dive in straight ahead. 
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But simple averaging turns out to be suboptimal when some signals are more reliable 

than others. For example, the spatial acuity of vision is much greater than that of hearing, 

meaning visual estimates of location are considerably more precise than auditory ones. This 

insight was formalised in Marc Ernst and Martin Banks’ Bayesian model of multisensory 

integration, which assumes that our perceptual systems combine different signals according 

to their reliability or uncertainty. Agents are thought to achieve this by keeping track of the 

noise or variance in different sensory modalities — with low noise taken as an index of high 

precision — and affording a higher weight to those channels that are more precise.  

This idea of ‘precision-weighting’ provides a good account of near-optimal cue 

integration seen in humans and other animals. Typically, we won’t jump straight to catch the 

dog, but will veer off to the right as our brains give more credence to the more precise visual 

signal. Importantly, this idea can also explain why perception sometimes errs: such as when 

we are fooled by a ventriloquist’s dummy. It is common to say that the ventriloquist ‘throws 

their voice’ so it appears to be coming from the silent puppet. In fact, the illusion of the 

speaking doll emerges because our perceptual systems infer that the visual and auditory 

signals come from a common source, but give more weight to what we see than what we 

hear as we try to pinpoint where this source is located. The perceptual experience is false — 

the voice is not coming from the dummy — but this can still be thought of as an optimal 

inference from the brain’s perspective, given that coincident sensory signals often do come 

from a common source, and visual information about the location of these sources is 

typically so much more precise. 

 

Precision and prediction  

So far, we have considered how a system might precision-weight different sources of 

incoming information. However, influential Bayesian models of perception suggest that our 

experience of the world around us is constructed by combining bottom-up sensory signals 

with top-down expectations about what the world contains. For example, if we are trekking 

through the desert we are much more likely to encounter a camel than a polar bear, and our 
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sensory systems can make use of this knowledge by biasing perceptual inferences towards 

the most probable alternatives (see Figure 1). 

But how much should we rely on our predictions and how much on evidence? This 

combination problem can also be optimised by precision-weighting: giving relatively more 

weight to bottom-up evidence or top-down predictions when one is relatively more precise. 

One upshot of this idea is that we should depend more strongly on our prior beliefs when the 

sensory world is most ambiguous. If a blustering sandstorm disrupts our desert trek, and the 

swirling sand makes it difficult to identify a creature in the distance, it is optimal for our 

perceptual system to rely strongly on our prediction that it’s a camel — as relying instead on 

the noisy and indecisive sensory evidence will only corrupt our perceptual inferences. But if 

viewing conditions are perfect we should trust the reliable evidence from our senses and 

minimise any contribution of top-down knowledge. 

It is, however, also important that we estimate the precision of our predictions. This 

can be achieved by tracking the stability of our environment and the degree to which the 

present resembles the past. At the beginning of our desert trek, we may have very narrow 

predictions about the kinds of animals we will encounter (for example, camel yes, polar bear 

no). Every camel we encounter on our trip will strengthen this prediction, furnishing in turn a 

stronger belief about the predictability of the desert landscape. Encountering a single 

surprising polar bear, however, will cause us to update our predictions and also alter our 

more global belief about the stability of the environment: perhaps the next time we see a 

creature on the horizon we should expect to encounter something unexpected — like a 

penguin or a chimpanzee? As we entertain a wider range of possibilities our top-down 

predictions become less precise and we should give relatively more weight to bottom-up 

signals.  

A long-standing hypothesis suggests that our brain uses specific neuromodulators to 

achieve this delicate weighting, altering the synaptic gain afforded to top-down predictions 

and bottom-up evidence based on how precise they are estimated to be. Indeed, recent 

work by Rebecca Lawson and colleagues has combined drug interventions with 
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computational modelling to test and support this conjecture. The authors focused on 

noradrenaline, a neuromodulator previously implicated in signalling the volatility of the world 

around us, and thus our relative (in)ability to make predictions about what will happen next. 

In unstable environments our current beliefs are poor predictors of what will happen in the 

future. This makes volatility a form of second-order precision estimate, reflecting the 

reliability of our expectations. One hypothesis suggests that, when we estimate our 

environment to be more volatile, noradrenergic neuromodulation increases the gain (signal-

to-noise) of incoming signals. This has the effect of upweighting incoming information — 

enabling rapid learning about potential changes — while also downweighting the impact old 

expectations have on inferences, since predictions are less reliable in a world that changes 

often.  

Lawson and colleagues investigated this hypothesis in an experiment where 

volunteers made perceptual decisions about noisy visual stimuli — is that picture a face or a 

house? — while tracking fluctuating probabilistic cues that predicted what the upcoming 

stimulus would be. Importantly, one group of participants completed the task after taking 

propranolol, a beta-blocker which antagonises the noradrenaline system. If noradrenaline 

does indeed encode environmental volatility, supressing this system should artificially 

enhance the apparent predictability of the environment — causing agents to give more 

weight to top-down expectations (and equivalently less weight to incoming signals). In line 

with this idea, the authors found that those who receive the drug rely more heavily on their 

expectations when making perceptual judgements and are slower to update these 

predictions in the face of new evidence — as though they believe their models of the 

environment are especially reliable or precise.  
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Figure 1. Precision-weighted inference and ‘false beliefs’ about precision.  

(A) In an ambiguous sensory environment (e.g., a desert in a sandstorm), you can generate more 

reliable inferences by incorporating prior knowledge into perception (e.g., that shape is probably a 

camel). The weight given to these two sources of information depends on how reliable or ‘precise’ we 

estimate them to be. Recent predictive processing models suggest agents can entertain false beliefs 

about precision that can lead to maladaptive inferences (see main text ‘The changing face of 

precision’). For example, an exaggerated belief in the reliability of incoming evidence (B) can leave 

agents with noisy inferences when signals are actually weak or ambiguous. In contrast, exaggerated 

beliefs about the reliability of predictions (C) may lead agents to falsely infer the presence of expected 

but absent events (i.e. hallucinate). 

 

Some prediction errors are more important than others 

A complementary perspective on the relationship between precision and learning is offered 

by research on reward. Prevailing models of reward learning suggest that humans and other 

animals form and update their beliefs about valuable outcomes by tracking prediction errors. 
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If you find yourself in a grimy cafe where the tables are dirty and the staff are rude you may 

not expect to enjoy your cappuccino very much — but if you receive a delicious coffee you 

will be pleasantly surprised and may use this positive prediction error to update your future 

beliefs (for example, you might visit the café again).  

Over the past few decades, neuroscientists have found that the reward prediction 

error signals implied by these models are readily detected in the dopaminergic midbrain and 

striatum of humans and other animals. But it has only more recently been appreciated that 

not all error signals are created equal. 

The key insight here is that the world is a stochastic place, and fluctuations in our 

environment from time-to-time do not always signal a need to change our minds. For 

example, if we visit our new favourite café and are served a foul cup of coffee, we are likely 

to be disappointed — but does this negative prediction error represent a reliable change, 

meaning we should never come back?  

Contemporary accounts of reward learning suggest this kind of puzzle can be solved 

by scaling prediction error signals according to our uncertainty about the distribution they 

come from. This means that agents must represent not only the outcome they expect on 

average, but also the variance in the outcomes they are likely to encounter. The logic here is 

that when our environments are less variable, and thus our expectations are more precise, a 

small deviation from our predictions might signal an important change: if the coffee has been 

consistently good every day for years, the single disappointing cup is newsworthy, and might 

lead you to think they have moved to a worse supplier or fired the best barista. In contrast, if 

our environment is more variable — sometimes the coffee is excellent, sometimes it is 

average — small fluctuations should not surprise us. This is just noise. It is not informative. 

Evidence has begun to emerge that prediction errors are indeed precision-weighted 

in this way. In one indicative study, Kelly Diederen and colleagues examined how neural 

signatures of reward prediction error changed when values were more or less certain. 

Volunteers had their brain activity recorded in an MRI scanner while they completed a 

reward learning task: on every trial predicting how much money they would receive from a 
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probabilistic lottery. Different lotteries could have the same expected pay-out on average but 

have wider or narrower distributions of possible pay-outs. Consistent with previous work, the 

authors found reward prediction error signals can be detected in the midbrain and the 

striatum — signalling whether a lottery pay-out was better or worse than expected. Crucially 

though, these error signals were augmented when lotteries were reliable (high precision) and 

attenuated when they were more uncertain (low precision) — and differences in this level of 

neural adaptation correlated with task performance.  

This precision-weighting of prediction errors also appears to depend on specific 

neuromodulators. If participants complete the same task after taking sulpiride — a drug that 

antagonises dopaminergic function — prediction error signals are still elicited in the same 

brain regions when the lottery gives an unexpected pay out. However, the adaptive scaling is 

markedly attenuated, and similar error signals are elicited from certain and uncertain 

lotteries. This suggests that — under dopamine blockade — agents are less able to 

incorporate information about the reliability or precision of their predictions into the signals 

they use for learning. 

There is an intriguing contrast between these studies looking at the role of dopamine 

in reward learning, and the work mentioned above examining noradrenaline’s contribution to 

sensory prediction. In the sensory prediction case, noradrenaline appears to encode the 

reliability of predictions — and more precise predictions lead to slower learning and a 

stronger reliance on expectations when making perceptual decisions. In the reward 

prediction case, however, dopamine also appeared to play a key role in enabling agents to 

track the reliability of the environment. When agents could make more precise predictions, 

unexpected outcomes elicited stronger error signals — leading to more rapid belief updating 

away from the prior rather than inferences biased towards it.  

It is possible this disjunct reflects a difference between domains: perhaps precision-

weighting optimises prediction and learning about perceptual signals and rewards in 

fundamentally different ways. However, another tantalising possibility is that agents 

separately estimate their uncertainty about how the world is and uncertainty about their 
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models of it. These two kinds of uncertainty may appear to go hand-in-hand, but can in 

principle decouple. For example, if you toss a fair coin you know perfectly well the outcomes 

that can ensue even if it is impossible to predict whether a specific toss will yield heads or 

tails. Thus, we are certain in our model of how the coin works, even if this model entails we 

should be uncertain about the outcomes, and these two kinds of uncertainty may be 

encoded at different levels of our cognitive hierarchy (see Figure 2).  

 

Knowing the reliability of ourselves and others 

The foregoing discussion illustrates how uncertainty or precision plays a key role in what are 

typically thought of as low-level processes like perception and reward. It is possible that the 

uncertainty involved in these cases is being computed by ‘subpersonal mechanisms’ — 

mental processes that operate beneath the level of subjective awareness. For example, 

while there is good evidence that our brain estimates the precision of incoming signals when 

combining data across our senses, or when combining inputs and expectations, we are 

typically only aware of the resulting combined percept rather than the tacit uncertainty 

estimates involved in producing it.  

Uncertainty estimation is, however, also at the core of high-level mental abilities such 

as metacognition: our ability to subjectively monitor the reliability of our own minds. A 

paradigmatic example of metacognition is the explicit feeling of confidence we have in our 

decisions, and these confidence computations enable particularly sophisticated forms of 

cognitive control — allowing us to slow down, gather more information or seek advice when 

we are uncertain.  

Growing evidence suggests that feelings of subjective confidence are generated by 

mechanisms that ‘read out’ the precision of other representations. One important line of work 

comes from the lab of Janneke Jehee, who have developed a pioneering multivariate 

modelling approach for neuroimaging data that measures the objective uncertainty in neural 

representations. In a recent study, Laura Geurts and colleagues used magnetic resonance 

imaging (MRI) to record the brain activity of observers while they made perceptual 
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judgements about tilted visual patterns, recording explicit confidence ratings about their 

choices. Using their innovative analysis approach, the authors could decode trial-by-trial 

variability in the population responses evoked by these stimuli across early visual cortex. 

Critically, they found that this objective measure of ‘neural precision’ predicts an observer’s 

subjective confidence rating on that trial — consistent with the idea that metacognitive 

mechanisms directly track the reliability or precision of other mental states. 

A role for precision estimation in metacognition in turn suggests a role for precision in 

social cognition, as confidence plays a key role in how we interact with others. Consider 

collective decisions: if we’re baking a cake and I think we need a tablespoon of salt and you 

think we only need a pinch, how much should we add? It may not be a good idea just to split 

the difference. Bahador Bahrami and colleagues have noted that this problem of combining 

information across different minds shares a similar structure to the problem a single agent 

faces when combining signals from different sensory modalities. Indeed, like the 

multisensory integration case, combined estimates across multiple agents are most accurate 

when we give more weight to the most reliable opinions. If you are certain that we only need 

a pinch of salt, and I’m merely guessing that we need a spoonful, we should give more 

weight to your estimate in our combined decision. 

But while we can monitor the uncertainty in our own beliefs, we do not have direct 

access to uncertainty in the minds of others. Thus, for this kind of precision-weighted 

combination to work we must explicitly communicate our confidence with others to work out 

whose opinion to weight most. Experimental work shows that when agents share their 

confidence — rather than just their beliefs — collective decisions can indeed become more 

reliable, and this suprapersonal information integration is well fit by the exact same kinds of 

precision-weighting models developed in multisensory cue combination. 

 

The changing face of precision 

Precision thus seems central to how psychologists and neuroscientists think about 

perception, learning, metacognition and social interaction (see Figure 3). However, the 
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concept of ‘precision’ in cognitive science has begun to change in radical ways. In particular, 

influential predictive processing models suggest that all aspects of perception, action and 

cognition can be explained within a single computational framework. Unlike classic models, 

these new theories suggest that our beliefs about precision can become divorced from 

objective reality. Under this way of thinking, agents might believe that they can make 

‘precise predictions’ about events that are objectively unpredictable or believe their senses 

provide ‘precise evidence’ even when signals are corrupted or the system is noisy. 

Entertaining nonveridical beliefs about precision in this way is key to how predictive 

processing models account for functions like attention. Psychologists have classically 

distinguished exogenous attention, where perceptual resources are captured by strong, 

salient events in the sensory world, from endogenous attention, where we strategically 

deploy resources to upweight less salient events that are relevant to our current goals. 

Bayesian models of attention elide this distinction by suggesting that all kinds of attention 

reduce to precision. When a bright, loud or otherwise strong event appears in our 

environment, such signals do indeed provide precise (high signal-to-noise) information that 

should be weighted accordingly. But this is not true for the non-salient, task-relevant 

information that guides endogenous attention — when you start looking for your keys, their 

jangle does not become physically louder and their metal surface does not become 

physically brighter. However, Bayesian models suggest that endogenous attention can be 

explained by assuming that agents entertain fictitious (counterfactual) beliefs about sensory 

precision — as if useful information in the world really is brighter and louder – rendering us 

particularly sensitive to the right kind of incoming signal.  

These models also suggest that false beliefs about precision are key to explaining 

action. Bayesian models of ‘active inference’ suggest that actions are generated by strong 

self-fulfilling predictions. In these accounts, our motor systems are thought to generate 

counterfactual predictions about the states of our bodies, for example, predicting that your 

hand is grasping a door handle, even if it is currently in your pocket. These counterfactual 

signals generate a prediction error because there is a mismatch between the actual and 
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predicted state of your body. Peripheral reflexes are thus engaged to minimise the error, 

reconfiguring the body in line with the prediction so that the expectation comes true.  

Curiously, for this scheme to work agents must hold onto the counterfactual 

prediction even when it conflicts with incoming evidence – you must really believe your hand 

is grasping the door handle, since revising this belief to match the actual evidence from your 

senses (e.g., you feel your hand truly remains in your pocket) would abolish the error signal 

needed to drive the reflexes. Active inference models suggest this problem can be finessed 

by assigning fictitiously high precision to these imperative predictions and corresponding low 

precision to incoming sensory signals — ignoring the true state of our body so that we can 

retain a false belief that it is somewhere else (though this idea remains controversial, see 

Yon et al. 2020).  

Divorcing beliefs about precision from reality also gives predictive processing 

accounts enormous scope to model cognition in health and disease. For example, the 

hallucinations that characterise illnesses like psychosis can be cast as an ‘optimal inference’ 

given overly-strong beliefs about the reliability of our expectations (see Figure 1C). 

Conversely, characteristics of autism, such as a preference for stable and repetitive 

environments, can be cast as a consequence of overly-strong beliefs about the precision of 

incoming evidence, such that every fluctuation in our sensory systems seems to signal the 

need to change our models of the environment (and the world thus seems unstable). 

The success of this kind of unshackled precision-weighting is unsurprising to many 

who have developed these models. Some note a mathematical proof known as the complete 

class theorem, which guarantees that it is always possible to specify a set of beliefs 

(including beliefs about precision) that would make the behaviour of a participant in an 

experiment or a patient in the clinic seem ‘optimal’. While this may be good news for 

modellers, it presents a problem for experimentalists, as any empirical result is compatible 

with the framework.  

With this in mind, we believe that it is essential for cognitive scientists to develop 

mechanistic hypotheses that are precise about why, where and when precision estimation 
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may go awry. Below we outline one possibility: that beliefs about precision at higher levels of 

a cognitive system (e.g., metacognition) are more likely to be inaccurate than precision 

estimates at lower levels (e.g.,  perception).  

 

 

Figure 2. Varieties of precision representation. 

Agents can estimate the precision of different cognitive states by tracking properties of their internal 

representations, such as their variance. For example, if a population of neural units encodes some 

property of the outside world our ‘best guess’ may be represented by the mean of this distribution, 

while the precision of this estimate is reflected in the variance ( how much the units ‘agree’). The 

significance of a precision estimate depends on what the distribution encodes. In sensory systems 

where units are tuned to different perceptual features, higher precision may be associated with 

stronger incoming signals and reduced environmental noise. In reward circuits where units encode 

expected value, higher precision indicates a narrower range of predicted outcomes. At higher levels of 

abstraction, the same statistical quantity can convey more complex information. For example, if a 

distribution forms a ‘contingency space’, with each unit representing a possible relationship between 

different events in our environment, variance reflects how certain we are that our current models of 

the world are correct.  
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Imprecision in high level cognition 

Recent Bayesian models suggest that meta-level systems generate feelings of confidence 

via ‘second order inference’, independently integrating evidence that is also available to 

other low-level systems. Empirically, metacognitive introspection is often suboptimal such 

that confidence reports are less accurate than first order decisions. These models account 

for this information loss by assuming that higher-level systems are corrupted by an 

independent source of noise that may be greater than that afflicting lower levels.  

Such noise could in principle have a physiological origin (for example, leakier neural 

circuits) but may also arise because of the kinds of computations performed at higher levels. 

If a system takes many noisy but unrelated signals as inputs, the uncertainty in its outputs 

can grow multiplicatively. For example, when computing confidence in a decision we might 

want to take account of multiple independent sources of information — such as the difficulty 

of the choice and the quality of the evidence we received — but if both our ‘difficulty’ signal 

and our ‘evidence’ signal are corrupted, our resulting confidence estimate can be even 

noisier than either input was to begin with. Because higher level computations (such as 

metacognition) are more likely to draw on diverse inputs, relative to lower level systems 

(such as perception), this kind of multiplicative noise may particularly interfere with high level 

precision estimates. 

Even if higher cognitive levels are not intrinsically noisier, however, there may be 

other limits on their fidelity. As they ascend through the hierarchy of the mind and brain, 

representations abstract over increasingly diverse inputs to support global aspects of 

cognition. By definition, global estimates require more information, often integrated over 

longer timescales. For example, we need to experience more ‘data-points’ to estimate the 

stability of our environment than we need to estimate what is occurring right now. The 

increasing input dimensionality at higher levels presents a computational challenge, as the 

resulting internal models can be too complex to perform straightforward operations with (for 

example, the Sensation distribution in Figure 2 can easily be approximated by computable 

summary statistics like mean and variance, while the Model distribution cannot). As a result, 
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it may become intractable for high levels of a cognitive system to integrate all the evidence 

potentially available at lower levels.  

 In the face of such ‘information overload’ agents may instead rely on heuristic 

computations that only integrate a subset of the information at hand. There is evidence for 

this kind of data-reduction in metacognition, because confidence estimates are sometimes 

best modelled by assuming that agents discard potentially useful information. For example, 

an effective way to compute decision confidence could be to compare our uncertainty about 

the options we have chosen versus the options we did not — but agents have been found to 

ignore the latter, relying more on the absolute evidence they have for the option they picked 

when forming a confidence estimate. 

In general, “coarse-graining” high-level representations can be adaptive, as it permits 

more effective transmission of macroscopic information within and between minds. For 

example, our internal model of how to behave on a first date could contain fine-grained 

details (for example, “don’t talk about your first ex-girlfriend, or your second, or your third…”) 

or contain a coarser policy (for example, “don’t talk about your past relationships”) that 

supports more efficient action planning and is easier to communicate to others. However, 

limiting and coarse-graining the data transmitted to higher levels also makes it more likely 

representations will depart from objective reality, enabling false beliefs about precision to 

emerge.  

High-level precision estimates may also be strongly shaped by expectations. 

Bayesian accounts argue it is rational to rely on prior knowledge when estimating the 

precision or accuracy of our cognitive systems. For example, if I buy a new pair of glasses 

with a stronger prescription, I may expect my visual system to provide more accurate 

information — inflating my estimates of sensory precision. Relying on prior knowledge will 

lead to inaccurate estimates when expectations and reality diverge — if I pick up the wrong 

pair of glasses, I may expect to see more clearly, but become more myopic than before. If 

high-level systems (like metacognition) receive noisier inputs, precision estimates at these 

levels may be strongly swayed by expectations (see Figure 1) while low-level systems (like 
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perception) may remain closely tied to the true reliability of incoming signals. Thus, I may 

have the false metacognitive belief that my vision has improved, even if my perceptual 

systems are not misled. Indeed, from a Bayesian point of view, a stronger reliance on prior 

beliefs also entails a stubborn insensitivity to environmental feedback. If the signals reaching 

metacognitive mechanisms are relatively noisier, existing beliefs in these systems will be 

updated more slowly, allowing false beliefs about precision to persist even when we 

encounter contradictory evidence.  

A final reason to suspect that high-level precision estimates are less veridical 

concerns the social role these mechanisms play. As noted above, explicit metacognition 

allows us to share our confidence with others, and in group decisions we give more weight to 

those expressing greater certainty. But agents can strategically distort the confidence they 

express: if we are being ignored, exaggerating confidence secures the attention of others, 

while expressing caution protects our reputation when we already hold high status. Agents 

could maintain separate representations of ‘private’ and ‘public’ confidence, but if we track 

our own actions to infer how confident we should be, a habit for exaggerating our confidence 

to others may ultimately bias how we represent the reliability of our cognitions to ourselves.  

Explicit communication about certainty and uncertainty also makes it possible for us 

to quickly acquire beliefs about precision in the absence of direct experience. This kind of 

explicit learning can be very useful: if we receive trustworthy gossip that a colleague is 

unreliable or that a funding body makes decisions at random, we can acquire accurate 

beliefs about these features of the world without having to experience these disappointments 

firsthand. There is, however, evidence that false beliefs acquired from reliable sources can 

be particularly resistant to change. For example, when volunteers play economic trust 

games and receive gossip that they have a trustworthy partner (someone predictably 

cooperative), they fail to revise this initial belief when their expectations are betrayed. This 

slowed learning is accompanied by attenuated midbrain signatures of prediction error — 

consistent with the idea that the precision of prediction errors has been down weighted 

relative to the precision of the belief about trustworthiness. Thus, while explicit 
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communication can provide a fast track to good beliefs, quickly acquiring beliefs about 

precision from others may make us prone to persistent error - especially if we have learned 

to trust the wrong kind of gossip.  

 

Conclusion 

Here we have seen how estimating uncertainty is central to the way cognitive scientists 

currently think about many aspects of the mind. Prevailing models that explain a host of 

cognitive abilities — including perception, learning, metacognition and social cognition — 

assume that our success critically depends on our ability to track the precision of the beliefs 

we hold and the reliability of the evidence that we receive.  

While psychologists and neuroscientists have begun to unpick the computational and 

neural mechanisms that support precision-weighted inference across diverse domains, there 

remain open questions about how precision works. In particular, while recent models 

suggest that our beliefs about precision can decouple from reality, they are currently silent 

on how this decoupling occurs. Here we have sketched out one hypothesis that could 

explain why precision estimates at higher levels of a cognitive system become inaccurate, 

and thus diverge from the ground truth. This conjecture may prove false, but nonetheless the 

need will remain for mechanistic hypotheses that get more precise about how precision is 

estimated in the mind and brain.  
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Figure 3. Four of the many faces of precision. 

The concept of precision is central to current thinking about the mind and brain in a variety of 

domains. (A) Models of precision-weighted inference suggest that agents combine different sources 

of information (for example, signals from different senses) according to their estimated reliability or 

precision. This means estimates are biased toward more precise sources (for example, vision tends 

to dominate spatial perception because the spatial precision of vision tends to be higher ). (B) Models 

of learning suggest that we update our beliefs about our environment using ‘prediction error’ signals 

that express the mismatch between our initial expectations and the evidence we sample. However, it 

is crucial to estimate the precision of our predictions to establish how surprised we should be. (C) 

Bayesian models of metacognition suggest that feelings of subjective confidence are constructed by 

‘reading out’ the precision of relevant low-level representations (for example, our certainty about our 

visual percepts reflects a read out of the noise in our visual system). (D) This kind of explicit 

metacognition allows us to communicate our uncertainty with others, allowing us to share precision 

across individual minds to optimise group decisions (or strategically influence others).  
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In brief 

In this Primer, Daniel Yon and Chris Frith explain ‘precision’ – a key concept in Bayesian 

models of the mind and brain. The idea of precision is central to current thinking across the 

cognitive sciences, but in recent years ideas about precision have begun to change. This 

raises important questions about precisely how precision works. 
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