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L,—error estimates for radial basis function
interpolation on the sphere

Simon Hubbert and Tanya M. Morton

Abstract

In this paper we review the variational approach to radial basis func-
tion interpolation on the sphere and establish new L,—error bounds, for
p € [1,00]. These bounds are given in terms of a measure of the density of
the interpolation points, the dimension of the sphere and the smoothness
of the underlying basis function.

1 Introduction

We shall study the radial basis function method [3] for solving the following
spherical interpolation problem.

Problem 1.1. Given a set, E = {&1,...,En}, of N distinct data points on
S%=1 " and a target function f : S — IR, find a function s : S — R that
satisfies the conditions

s(&)=r(&), i=1,...,N. (1.1)

The accuracy of the method will certainly depend upon the distribution of the
data points Z C S9!, and so we assign a density measure (mesh-norm) by

h = sup min{g(n,&) : & € E}, (1.2)
nesd—l

where g denotes the geodesic metric given by g(¢,1) = cos™1(¢Tn), for &, €
S%=1 One would expect that, as the points become more and more dense,
i.e, as h — 0, then the interpolation error should decrease. This intuition is
justified since, for sufficiently smooth target functions f, we will prove results
of the form

s = fll,(se-1) = O(h*), where A, >0, and p € [1,00].
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Before we can analyse the method further it is necessary to review some basic
Fourier theory for the sphere. We begin in IR where we say that a polynomial
p:IR? = IR of degree k > 0, is

(1) harmonic if it satisfies the Laplace equation

0? 0?
Bepla) = (g +++++ 523 ) lo) =0, (1)

(ii) k-homogeneous if p(tz) = t*p(z) for any ¢ > 0.

We let HPy(IRY) denote the space of all polynomials of degree k& on IR? that
are both harmonic and k—homogeneous. The restriction of this class to the
unit sphere is of particular interest.

Definition 1.2. Let py € HP(IRY), then its restriction to the sphere, V), =
Pk |ga-1, is a spherical harmonic of order k on S~1. We let H,’;(Sd*I) denote
the space of spherical harmonics of exact order k.

The following result follows from an application of Greens theorem, see [16].

Theorem 1.3.  The exact order spherical harmonic spaces HZ(Sd*I) and
Hy(S91) with k # 1 are Ly(S?~1)—orthogonal.

In view of this we let H(S%1) = 69?:07-[;(5‘14) denote the space of spherical
harmonics of order at most k.

For every z € IR\ {0} we can write z = ¢, where r = ||z| and ¢ € S?~1. This
observation allows us to rewrite the Laplace operator as follows

? d-10 1 d
= w‘FTE-FT—QAz, for z €¢R \{0} (1.4)
where A’g, having no radial component, is the Laplace operator for the sphere,
see [16]. Let pr € HPk(IRY) then, for z € R?\ {0}, we can write p;(z) =

kY (€). Applying (1.4) gives
0= Agpi(w) = k(k +d = 2)r* V() +r* *AL()
= ApVR(§) + MVe(€) =0, where Ny = k(k+d —2). (1.5)
The following result is taken from [6] Chapter 3.

Ay

Theorem 1.4. The space HZ(Sd*I) is precisely the eigenspace of AZ corre-
sponding to the eigenvalue \g. Furthermore, the direct sum of these eigenspaces
is all of Ly(S4™1), that is

Ly(S"1) = @R Hi(S7). (1.6)
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The following theorem illustrates the role of the 7} (S9~1) spaces in the context
of spherical Fourier analysis.

Theorem 1.5. Assume d > 2 and let By = {Vk;:1=1,...,Npq} denote an
orthonormal basis for ’H,";(Sd_l). Then, in view of (1.6), the orthonormal sys-
tem {By}x>o is complete in Ly(S? 1), and every f € Lo(S? 1) has a spherical
Fourier expansion given by

oo Ni,a
F=Y"3 feadey (1.7)
k=0 =1
where
Feg = (F V) ro(sa-1y = " J (&) Ve (&) dwq—1(£), (1.8)

are the spherical Fourier coefficients of f.

The following result is the famous addition theorem for spherical harmonics
[16].
Theorem 1.6. Let wy | denote the surface area of S ', and let Vg : 1=

1,...,Nga} be an orthonormal basis for Hj(S?~t). Then, for any &,n € S471,
the function

Ni,a
Pya(€Tn) = C;\‘;];; ; Vi i()Vra(n), (1.9)

is a unique real valued, univariate polynomial of degree k defined on [—1,1].

The polynomials Py 4, k > 0, are commonly called the d—dimensional Legendre
polynomials and they play an important role in this paper. In view of this we
collect together some of their key properties.

o Orthogonality: P}, is a polynomial of degree k, such that P 4(1) = 1,
|Pr,a(t)] <1 and the orthogonality relation is

1
/Pj,d(t)Pk,d(t)(l — )t = —2 L5y (1.10)
) wd—2Ng 4

¢ Legendre-Fourier Expansion: Let ) be continuous on the interval [—1, 1]
such that

d—

/1 1p(t)|(1 — £2) 2" dt < o, (1.11)

-1
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then ¢ has a Legendre series expansion ¢ (t) = > ;- ax P a(t). Furthermore,
v induces a zonal kernel ¥(¢,n) = 1»(¢7n) which has a spherical Fourier series

of the form,
oo Nk,d

TEn) =D exVka(€)Vea(n), (1.12)
k=0 I=1
where {¢;}72, denote the spherical Fourier coefficients of ¥, and, using (1.9)
and (1.10), these are given by

1
& = YL wd_g/Pkd(t)l/;(t)(l — £2) . (1.13)
Ni,a ) ’

¢ Sobolev spaces: Let A\, be as in (1.5). The Sobolev space WQ’B(Sd_I) of
order B > 0, is defined to be the Hilbert space of functions f € Lo(S9 1) with

norm
0o Nk,

HfHIZ/VQB(Sd_l) = Z Z(l + Ak)ﬁ|fk,l

k=0 I=1

2

2 The radial basis function method for the sphere

One way of solving Problem 1.1 is to choose the interpolant s from the linear
space spanned by the N functions

§=1(9(6,&), j=1...,N,

where g denotes the geodesic metric on S?~1, and 1 : [0, 7] — IR is a continuous
function known as the zonal basis function (ZBF). In this case the interpolant
is

N
s(€) = aip(g(§, &), eS8 (2.1)
j=1
Therefore, provided that the interpolation matrix

is non-singular, the interpolation conditions (1.1) define the real coefficients
{a; :i=1,..., N} uniquely.
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Definition 2.1. A continuous function ¢ : [0,7] — IR is said to be strictly
positive definite on St (p € SPD(S4Y)) if, for any set = = {&}N, of
distinct points on S, the quadratic form

N N

o A =" ajopp(g(€5, &) (2.3)

j=1k=1

is positive on RV \ {0}.

If we choose 1 € SPD(S%!), then the resulting interpolant (2.1) is unique
since the corresponding interpolation matrix is, by definition, positive definite
and hence non-singular.

Frequently one requires that an interpolant should reproduce the low order
spherical harmonics. The ZBF interpolant s, given by (2.1), does not have this
property and so it is often convenient to add to s a spherical harmonic of order
k, which gives the form

N M
s(€) =Y ayp(g(&,&) + Y BiYi(€), €es, (2.4)
j=1 j=1

where M = dim H,(S?1), and {)1,..., Y} is a basis for Hi(SE1).

The interpolation conditions (1.1) now provide N linear equations in N + M
unknowns, and so it is usual to impose M linear constraints

N
ST adig) =0, 1<i<M, (2.5)
i=1

to take up the extra degrees of freedom. Thus, we use the equations

N M
Yo aip(glén &) + Y BY(6) = f(&), 1<i<N, (2.6)

Jj=1 Jj=1
and

N
> Vi) =0, 1<i<M, (2.7)
j=1

or equivalently, we have the linear system

() (5) =

{; ) (2.8)
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where A is as in (2.2) and Y € RV*M ig given by
Y;j = Y;(&), where 1 <i<N, and 1<j < M. (2.9)

Thus a unique augmented ZBF interpolant exists if and only if the augmented

interpolation matrix
- A Y
A= ( vT o ) (2.10)

Definition 2.2. For any set = = {&}N., of distinct data points on S9! we
consider the following subspace

is non-singular.

N
W1 = {a eRN: > a;¥(&) =0 for all Y € Hm_l(Sdl)}. (2.11)

=1

A continuous function 1 : [0,7] — IR is said to be conditionally strictly positive
definite of order m € IN on 4!, (vp € CSPD,,(S*")) if the quadratic form
(2.3) is positive on Wy,—1 \ {0}.

Any function v € CSPD,,,(S4") can be used to provide an augmented ZBF
interpolant of the form (2.4) with £ = m—1. However, in order to guarantee the
uniqueness of such a solution we impose some restrictions on the data points.

Unisolvency: Let m be a positive integer and let M = dim H,,_1(S?1). A set
of distinct points E = {&;}M | is said to be Hy, 1 (ST ) —unisolvent if the only
element of Hy—_1(S9™1) to vanish at each &; is the zero spherical harmonic.

The following theorem, see [13], establishes the non-singularity of the aug-
mented interpolation matrix A in the case of 1) € CSPD,,(S%1).

Theorem 2.3. Let ¢ € CSPD,,(S%1) and let E = {&}Y, denote a set of
N distinct data points in S* 1 such that

(i) N > M = dimH,, 1(5471),
(i3) {&YM, is an Hyp1(S9 1) —unisolvent subset.
Then the augmented interpolation matriz A, given by (2.10), is non-singular.

Using the work of Schoenberg [19], and extensions thereof [6], we can formulate
the following theorem.

Theorem 2.4. If 1) € CSPD,,(S% ), then it has the following form

P(0) = Z ai Py q(cos §), (2.12)

k=0
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where
o0
ar >0 for k>m and Zak < 00, (2.13)
k=0
where {Py 4} denote the d—dimensional Legendre polynomials, given by (1.9).

Remark 2.5. (i) In view of Theorem 2.4 we choose to consider each ZBF 1)
as a function of the inner product, £T'n, since cos(g(¢,n)) = &1'n.

(i4) Throughout this paper we shall take 1 € CSPDy(S%') to mean 1 €
SPD(S% 1. Further, if ¢ € CSPD,,(S%") with m > 0, then we shall assume
without loss that ap =0 for 0 <k <m — 1.

The complete characterisation of the class of functions of the form (2.12) sat-
isfying (2.13) that are CSPD,,(S% ') has been investigated by several re-
searchers see [14], [17] and [18]. The most recent result is due to Chen,
Menegatto and Sun [4] who show that, for d > 3, a necessary and sufficient con-
dition is that the set {k € INo\{0, 1,...,m—1} : a5 > 0} must contain infinitely
many odd and infinitely many even integers. The case of d = 2 remains an
open problem and so we will only consider basis functions ¢ € CSPD,, (S¢")
for which a; > 0 for £ > m.

3 A variational theory
For every 1 € SCPD,,(S%") we can associate a zonal kernel ¥(¢,n) = 4(£7n).
This, in turn, has a unique spherical Fourier expansion, given by

0o N

T(En) =D Y eVra(©)Vra(m), (3.14)

k=m [=1

where the ¢; denote the spherical Fourier coefficients of ¥. These are related to
the Legendre coefficients of ¢ by (1.13). Furthermore, each sequence {¢}r>m
possesses a certain decay rate as k — oo. In particular, we say that

1. 4 has a—Fourier decay if there exists positive constants A, Ao such that

A1+ k)7UTH) <o < A1+ K)o >0, k> m. (3.15)

2. 1) has e—Fourier decay if the ¢; decay at an exponentially fast rate.
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Defintion 3.6. Let ¢ € SCPD,,(S%") and let {é}x>m denote the spherical
Fourier coefficients of its associated zonal kernel (3.14). We define the native
space of Y to be

oo Nk
Hym {feL2(5“ Flm = ZZ' Z'Q } (3.16)

k=m [=1

where | - |ym s a (semi-)norm induced via the (semi-)inner product

oo Niyd f
(frDpm =Y > === k0t (3.17)
k=m =1
Note 1. If m = 0 then |- |y o is a norm which we rewrite as || - ||. Furthermore,

if ¢ has a—Fourier decay then Hy o is norm equivalent to the Sobolev space
Wf(Sdil) where 8 = d_l%, that is, there exists constants 0 < key < Keq,
such that

ketI“ ’ HWZB(Sd—l) < “ : ||¢ < KetZ“ ’ wa(sd—l)' (3'18)

Note 2. For m > 0, we can use the fact that H,, 1(S%") is a finite dimensional
Hilbert space to modify (-,-)y m so that it becomes a genuine inner product.
In particular, if we assume that {&;,..., &} is a Hyp 1 (S4 ) —unisolvent set,
then a suitable inner product is

<129 > (s0-1)= foz (&)s  f,9 € Hm-a(STH). (3.19)

Moreover, we have that

<[i9>p= <[f.9>n, 51 T (F,9wm (3.20)
is an inner-product for Hy ,,,. Indeed, we have the following new definition.

Definition 3.7. Let m > 0 and let p € CSPD,,(S%'). We define the
normed native space of 1 by

Hy = {f € Lo(5™1) + | fls < oo}, (3.21)

where || - ||y is the norm induced by the inner product (3.20).

Note 3. Since all norms are equivalent on finite dimensional spaces, we can
use the same arguments as in Note 1 to deduce that, if ¢ has a—Fourier decay
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then H, is norm equivalent to W2ﬁ (S1), where 8 = ‘H%. In particular, we
can use the Sobolev embedding theorem to conclude that Hy, is a Hilbert space
of continuous functions.

The importance of the native space of a basis fuction 1 € SCPD,, (5% ") is
well illustrated by Levesley et al in [13], where it is shown that, given any
[ € Hy, the solution to the following variational problem

minimise{||s||¢ ts€Hy and s(&) = f(&) 1<i < N}, (3.22)

is precisely the unique p—based ZBF interpolant. This variational problem is
precisely the same as finding the optimal interpolant in a Hilbert space, such
problems are well understood and were studied in the late 1950s by Golomb
and Weinberger [9]. The real power of the variational approach lies in the fact
that the original Hilbert space techniques from [9] can be applied to provide
useful pointwise error bounds. Specifically, for a given f € Hy, the error of its
1p—based ZBF interpolant sy can be bounded by an estimate of the form

|57 (&) = FO < Py(&) - llsg — flly, €85 (3.23)

The factor Py () is called the power function of 1 € CSPD,,(S% ) and has
the following explicit form

N N N 1/2
Py(&) = [ D v (el &) — 2> wp(€7) + (1) |,
i=1 j=1 i=1

where the coefficients {y; € IR : i =1,..., N} are chosen to satisfy

N
V() =Y (&), forall Y € Hy_1(547Y), (3.24)
i=1

where J > m is a fixed integer. Stated in this way, it is clear that a close
investigation of Py, and especially the choice of the +y;, ought to provide an
insight into the accuracy of the ZBF interpolation method. Indeed this strat-
egy is employed, in quite different ways, by Jetter et al [12] and also by von
Golitschek and Light [7] to provide error bounds of the form

|5£(€) = ) < B -llsy = flly, €€8T7H (3.25)

where 3(h) is a function which tends to zero as h — 0.
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We remark that the error bound (3.23) may be viewed as a specific instance of
the following more general result.

Proposition 3.8. Let ¢ € CSPD,,,(S4Y) and let = = {&}Y.| denote a set of
distinct points on S4='. Consider the subspace

Zy={f€Hy: f(&)=0 i=1,...,N},

then
IF (O] < Py(&) - |1 flly, for all f € Zyand ¢ €S (3.26)

So far in this paper we have used the mesh-norm A to measure the relative
density of a set of data points = = {¢; i]\Ll in 41, Geometrically speaking,
h represents the radius of the largest spherical cap (open geodesic ball) which
can be placed on S9! without covering any & € Z. In [7], von Golitschek
and Light use the height hy of the maximal spherical cap as an alternative
mesh-norm. That is, they define hy to be the smallest number such that

inf max{nT&:& €8 >1—hy, (3.27)
neSd-1

is satisfied. We shall call hg the “dot product” mesh norm of =. Using some
elementary trigonometry we can show that hy = 2sin?(h/2). Furthermore, if
h € (0,27 /3) then we can apply the small angle result for sin(h/2) to give

— <hg < — 3.28
C<his< (3.25)
that is, hq is equivalent to k2. The idea of using the dot product as an alter-

native measure of distance will prove to be a useful one.

Definition 3.9. For every ¢ € S%! we define an associated a dot-product
distance function

de gi-1 [—1,1], given by d¢(n) = £Tn.
Furthermore, we can define a dot product neighbourhood of £ by

N(&,rg) ={n€ ST 1 de(n) > 1 —ryq}, where r4 € (0,1). (3.29)

The following crucial result is quoted from [7].

Lemma 3.10. Let .J be a fized positive integer and let E = {&1,...,En} denote
a set of N distinct data points in S with dot product mesh-norm hg. There
is a number hg € (0,1) such that if hy < hg, and & € S9=1, then there exist
coefficients {v;}., such that
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N
1. Y(§) = ;7iy(£i)a for allYy € Hy_1(S* ),

2. there exists a constant Ky (independent of £ and hg) such that if & ¢
N (&, Kihg), then v =0, and

N
3. there exists a constant Ky (independent of & and hg) such that > || <
i=1
K.

With this preparation the following result can be established.

Theorem 3.11. Let ¢ € CSPD,,(S%") have a—Fourier decay and let E =
{&1N| denote a set distinct points on St with mesh-norm h. Set

[a+1]}’

J = {
max<q4 m 2

(3.30)
where [x] denotes the smallest integer > x, and assume that the dot product
mesh-norm hg (3.27) of E satisfies

1
7 < hqg < (3.31)

(K +1) K2

where K > J is a positive integer. Let f € Hy and sy denote its unique ZBF
interpolant. Then, for any & € S, we have

1F(&) = s7(&) <C-h2 || f — sflly, (3.32)

where C is a positive constant independent of h.

Proof. For a full proof of this result see [15], Theorem 2. For a brief sketch,
we note that choice of integer J allows us to evoke Lemma 3.10 to provide,
for any ¢ € S%!, a neighbourhood N (¢, K1hg) and a set of local coefficients
{viticr,,, where Ijpe := {i : §& € EN N(& Kihg)}, which satisfy condition
(3.24). Furthermore, these coefficients can be used to define a local power
function, Py .. say, which by (3.23), provides the pointwise error bound

|57(€) = F(O] < Pyoc(€) - llsg — flly, €€ 847 (3.33)

It then remains to show that Py, can be bounded above by a constant mul-
tiplied by h/2. O
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We close this section by providing two important properties of the ZBF inter-
polant, both of which can be inferred from the theory of optimal interpolation
in a Hilbert space [9].

Lemma 3.12. Let ) € CSPD,,(S%1). For a given f € Hy let sy denote its
unique P—based ZBF interpolant, then we have

@) If —=splly =< S f =55 >p, @) I =sslly < I flly-

4 Global error estimates

In this section we generalise techniques dating back to Duchon [5], from his
study of the accuracy of interpolation using D™ —splines in Euclidean space.
The crucial ingredients for a Duchon framework for the sphere are as follows

(1) A suitable quasi-uniform mesh of data points for the sphere.
(73) A suitable Sobolev extension operator for the sphere.

(737) A spherical version of Duchon’s inequality.

The technical effort required to establish these items is quite considerable. In
view of this, we shall simply state the key results and refer the reader to our
accompanying paper [11] for full details.

4.1 The key results

¢ A quasi-uniform mesh for the sphere:

Lemma 4.1. Let d > 2 be an integer and set M = 2v/d — 1. Let 0 € (0,7 —d4),

where 04 = 4‘1%/2 < 35. Let My be an arbitrary positive number and set

hg = min{ (4.1)

0 1}
M + My’ '
Then, for any h € (0, hg), there exists a set of points Zj, C S ! such that

S = U,ez,G(2, Mh).
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Let Fy denote the characteristic function of a set A C S%='. There ezists a
positive integer @ independent of h such that

Z Foeam) < Q,  where M =2Vd—1+ Mj. (4.2)

ZGZ}L

Further, the cardinality of Zp is bounded above by CQh_(d_l), where Cq 1is
independent of h.

¢ A Sobolev extension theorem for the sphere:

Theorem 4.2. Let z € ST! and E = {&}Y, denote a set of distinct points
on ST Let B € [k, k + 1], where k > d=1 s q positive integer. There ezists
positive numbers Ry and C 4 such that if we let My > max{Ry — 2/d — 1,0}
be a fized positive number and let

ho = C4/(3M) where M =2vd—1+ M, (4.3)

then, assuming that = has mesh norm h € (0,hy), there exists an extension
operator Ec,, 37, : WQ’B(G(Z,Mh)) — WQB(Sdfl) satisfying
1) (Bg, 5mHlaammy = £ for all f € W (G(z, Mh),

2) there exists a positive constant IC, independent of h and z such that
“EG(z,Mh)f“WZB(SH) <K- ||f||W25(G(Z’Mh)),

for all f € Wf(G(z,Hh)) such that f(&) =0 for € € ENG(z, Mb).
o A spherical version of Duchon’s inequality:

Theorem 4.3. Let § > 0 and let My be any positive number. Set hy to be
as in (4.3), let h € (0,hy) and let Z;, denote the corresponding quasi-uniform
mesh for S from Lemma 4.1. Then, for any f € WQ’B(Sd_I), we have

S s ey < QI s g (4.4)

2E€Zp

where Q is the constant (independent of h) from Lemma 4.1.
We now derive the first L, error bounds for ZBF interpolation.

Theorem 4.4. Assume that v € CSPD,,(S%"') has a—Fourier decay. Let
= denote a set of distinct data points on S with mesh-norm h € (0,7/6)
(1.2) and dot product mesh norm hg (3.27). In addition, suppose that
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1. J and K are the integers as defined in Theorem 3.11, and K; denotes
the neighbourhood constant (corresponding to J) from Lemma 3.10.

2. The dot product mesh-norm satisfies hg < 2371

3. Ro and C4 are the constants from Theorem 4.2 corresponding to =
otd—1
It

4. For a given constant
My > maX{RO —2vd —1,2+/ Kl}, (45)
the mesh-norm h satisfies

0<h<hy=Cy/(3M) where M =2vd—1+ M.

As usual, let sy denote the unique ZBF interpolant to a target function f € Hy.
There exists a constant C, independent of h, such that

o d-1
1 = splysi-1y S C BT f = sglly, for pe[2,00)  (46)

and

o d-1
1f = sgllz,(sa-1) < C-h2T = (f = sglly,  for p€[L,2). (4.7)
Proof. Using Lemma 4.1 we can deduce that

1 = 551 sy = [, 17 = 5@ (0
< [ =S €),or 81 =2V

ZGZ}L

The function f — sy is continuous on G(z, Mh) and, as this is a compact
subset of S%~!, there exists a point ¢, € G(z, Mh) at which f — sy attains its
maximum. This observation allows us to write

I =511 iy € S UF =o€ [ deass (@

o G(z,Mh)

< Cpy b (= s, (4.8)

2E€Zp

where Cp, is independent of h.
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Now, rather than consider f — sy, we choose instead to consider the restriction
f- 3f|G(z Wh) where M = 2v/d — 1 + M, for some M; > 0. Since the native
space H, is norm-equivalent to the Sobolev space Wf (S%=1), we have that
f - 3f|G(z 77n) Pelongs to the local Sobolev space WQ’B(G(Z,Mh)), for each

2 € Zy,. In choosing a suitable value for M;, and hence M, we must take into
account the following conditions.

(a) In order to employ Theorem 3.11 to provide pointwise error estimates, we
require that each G(z, M h) must contain the dot product neighbourhood
N(ﬁza Kl hd)

(b) In order to apply the Sobolev extension operator to f — 3f|G(z h) €
Wf(G(z,Mh)), we require that Mh € (Roh, C4/3).

We note that the choice of M; given by (4.5) is sufficient to ensure condition
(b) is satisfied. It remains to show that, with this choice, condition (a) is also
satisfied.
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S~ NEKR)
[

) ~.
VI it
‘\'\ G(éz ] Kl h)
\\
|
\\.

Figure 1: Tllustration of the nesting of the key neighbourhoods

For any £,, the neighbourhood N (§,, K1hg) can also be viewed, in more familiar
terms, as an open geodesic ball G(&,,0), where 0 satisfies sin?(0/2) = K1hg/2.
Now since hy < 3/(2K7), we have that 6 € (0,27/3), thus we can apply the
small angle result for sin(0/2), followed by the mesh-norm equivalence relation
(3.28) to deduce that

2% < VEKihs < VK- %
In particular, this shows that

N(z, Kiha) = G(&:,0) C G

e

e

e

£, 2V/Kih)

z, (M + 2y/K1)h)

z, (M + My)h) = G(z, Mh)
z,C4/3), (see Figure1).

—_~ o~ ~

Thus the choice of My, given by (4.5), is sufficient to ensure that condition (a)
is also satisfied.
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Let v, = f — 5f|G(z,Hh) then, using the Sobolev extension operator, we have

El. Eg, 02 € W3 (ST,
E2. Eq, ypyv-(§) =0forall § € EN G(z, Mh).
E3. Using part 2 of Theorem 4.2, there exists a constant K, independent of h
and z such that ||EG(Z,Mh)vZ||W25(Sd71) <K- ||UZ||W§(G(z,Mh))'
Since condition (a) is satisfied, we have that
Ee. = ENN(&, Kihg) C ENG(z, Mh) = E,.

Thus, the optimal power function of 1, based upon =, and evaluated at the
point £,, can be bounded above by the local power function Pd,’loc(fz). Fur-
thermore, applying Proposition 3.8, (3.33), (3.18) and E3 respectively, yields

|(f - 3f)(€2)| = |EG(Z7Mh)vz(€z)| < Pd,’loc(gz)“EG(Z,Mh)vzH’l/J

< Pqp,loc(fz)Keq“EG(z,ﬁh)UZHWZB(Sd—l)
< CKeq - h2 1B, ynyzllyys

< ]CCKBLI ’ h%“Uz“WZﬁ(

(84-1)
G(z,Mh))"

Substituting this into (4.8) gives

1f = s¢l17,, (5a-1) < O DS T = stlg ZMh)“Wﬁ(G(Z Mh))’
2EZp

where Cp, = Cp, (KCK,q)? is independent of h.

For p > 2 we use Jensen’s inequality 31 a? < (2N a2)P/? [2], followed by
Theorem 4.3, and (3.18) to give

p/2

ap
If = sllZ, (s0-1) < Crs - IEHED A I = )l ” (G(2,Mh))
ZGZ}L

(2 p/2
S CPQQZZ) . p+d 1 (“f Sf”wﬁ Sd— 1))
< (CRQ%kD) - W TV I f —splhy
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Finally, taking the p** root gives

2+ﬂ
1f = ssllp,sa-1)y < C-h27 7 ||f = sglly,

where C' = (CPZng;]p)l/” is independent of h.
For p € [1,2) we execute the same arguments as above, however we replace

/2
a? < N'°% (ZAL a2)p [2]. Further, we use

i=1 % =1
the fact that the cardinality of Zj, is bounded by C’Qh_(d_l), see Lemma 4.1,
to deduce that

Jensen’s inequality with Z

p/2
IS = s¢l7, (5a-1) < CP AETED D N = splo th)HWB(G(z,Hh))
2€7),

< Cp,Q%Cq - b (=55 (“f 3f||W5 gd— 1))11/2

= (Or,QFkd)Cq - W5 - |If — syl
Finally, taking the p!" root provides

1f = sl sy < C-h"51F = sgl,
where C' = (Cp, Q% kol Cp)'/? is independent of h. O

At first glance it is tempting to “tidy up” the error result (4.6) by employing
the optimality bound ||f — sf|ly < [[f|ly, from Lemma 3.12 (i7). This is a
perfectly valid procedure, however we will show that an improved bound is
available, provided that f belongs to a certain subspace of Hy, which we shall
denote as Hy.y. Once this improved bound is established we will use it to
improve the L,—convergence order in (4.6) for target functions f € Hyy.

Definition 4.5. Let ¢ € CSPD,,(S4') have a—Fourier decay and let ¥
denote its corresponding zonal kernel. We define the convolution kernel of W

by
e i= [ VeV @), &ne st

It is more revealing to work in terms of Fourier expansions since we have

oo N 0o N

=3 3 aVea©Vian) = (T ) Em) = DY GVei(€)Vea(n).

k=m [=1 k=m [=1
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This observation allows us to define a convolution native space by

1/2

|sz| < oo}'

00 Nia

Hq/,*d,’m = {f € L2(Sd71) : |f|¢*1/1am - Z Z

k=m [=1

The observations made in Section 2, regarding native spaces, also apply to
convolution native spaces. In particular, we can define a normed native space
(Hysaps || * |lpwp) and conclude that

(Hypps || - ) = WP (8471 € WY (S = (Hy, || - |ly),  (4.9)

where 8 = %‘H and where = denotes norm equivalence.

Lemma 4.6. For a given f € Hy.y, let sy denote its unique 1—based ZBF
interpolant. Then

1F = s7l% < UFllpsp - If = 57l pyesa-1)- (4.10)

Proof. Using Lemma 3.12 (4), the definition of < -,- >, and an application of
the Cauchy-Schwarz inequality respectively, gives

N
ook fro sz Sf)k,l)

If=spll=<ff—sp>p=3 3

k=m =1
1 1/2
oodef /2 oo Nk /
2
(2 2 DD Fra=(s9)0)
k=m =1 k=m =1

S M lgww - 1 = 55l (52-1)-

With this in place we can provide the following improved error bound.
Theorem 4.7. Assume the same set up as in Theorem 4.4 and assume further
that the target function f belongs to Hy.,. Then we have
d—1 4 d-1
1f = sfllz,(s-1) < C-h* T T | fllypy, for p € [2,00), (4.11)

and
I1f = sflln, (sa-1) < C* - B fllpwy,  for p € [1,2], (4.12)

where C' is the constant, independent of h, from Theorem 4.4.
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Proof. Since f € Hy.y, C Hy we have, from Theorem 4.4 with p = 2, that

o d-1
If = sfllpysa-1) < C-h2T 2 ||f = sl

substituting this into (4.10) gives

ayd-1
If =gl < Ch2 2 || fllywpllf — s£lles

cancelling the factor ||f — s||, gives

ayd=-1
1f =splly < C-h2F (| fllyuy- (4.13)

Substituting this inequality into the results of Theorem 4.4, namely (4.6) and
(4.7), proves the theorem. O

Corollary 4.8. Assuming the same set up as in Theorem 4.7, we have

d—1
1f = s¢lpasaty < C 2T fllpsy- (4.14)

where C' is a positive constant independent of h.

Proof. Since f € Hy., C Hy, we can appeal to Theorem 3.11 to deduce that
there exists a constant C independent of A such that

1f = 8 lLa(st1y SC -2 f = sglly.

The proof is completed by substituting (4.13) into the above. O

5 Conclusions

In [10], a numerical investigation into the performance of the ZBF method
is presented. In particular, the numerical evidence strongly suggests that if
¢ € CSPD;,(5471) has a—Fourier decay and f € Hy.y, then the optimal
L,—error bound has the form

1f = s¢llL,(sa-1) < C- b Fllguy,  p € [1,00], (5.1)

for some constant C' independent of h. Comparing this result with our theoret-
ical error bounds, (4.11) and (4.12), we find that we have complete agreement
in the case of p € [1,2]. However, for p > 2, there is gap between the theoretical
bound and the numerically observed bound. Indeed, the authors believe that
the task of bridging this gap that is, replacing the factor % in (4.11) with
d—1

%=, is a challenging puzzle and one which deserves further investigation.



Error estimates 21

References

[1]

[10]

[11]

[12]

S. C. Brenner and R. L. Scott: The Mathematical Theory of Finite
FElement Methods, Springer Verlag, New York (1994).

M. D. Buhmann: Radial basis functions, Acta Numerica, CUP, (2000)
1-38.

D. Chen, V. A. Menegatto and X. Sun: A necessary and suffiecient
condition for strictly positive definite functions on spheres, preprint
(2001).

J. Duchon: Sur ’erreur d’interpolation des fonctions de plusieurs vari-
able par les D™ -splines, RAIRO Anal Numer. 12, (1978) 325-334.

W. Freeden, T. Gervens and M. Schreiner: Constructive Approzima-
tion on the Sphere with Applications to Geomathematics, Oxford Uni-
versity Press, Oxford (1998).

M. v. Golitschek and W. A. Light: Interpolation by polynomials and
radial basis functions on spheres, Constr. Approx. 17, (2001) 1-18.

K. Guo, S. Hu and X. Sun: Conditionally positive definte functions and
Laplace-Stieltjes integrals, J. Approx. Theory. 74 (1993) 249 — 265.

M. Golomb and H. F. Weinberger: Optimal approximation and error
bounds, In: On Numerical Approximation, (R. E. Langer (ed)) Uni-
versity of Wisconsin Press, Madison, WI. (1959) 117-190.

S. Hubbert Computing with radial basis functions on the sphere,
preprint (2002).

S. Hubbert and T. M. Morton: A Duchon framework for the sphere,
preprint (2002).

K. Jetter, J. Stockler and J. Ward: Error estimates for scattered data
interpolation on spheres, Math. Comput. 68, (1999) 733-747.

J. Levesley, W. A. Light, D. Ragozin and X. Sun: A simple approach
for the variational theory for interpolation on spheres, in New Devel-
opments in Approximation Theory (M. D. Buhmann, M. Felten, D
Mache and M. W. Miiller (eds)), International Series of Numerical
Mathematics, Vol. 132, Birkhiuser, Basel, (1999) 117-143



22 Simon Hubbert and Tanya M. Morton

[13] V. A. Menegatto: Strictly positive definite kernels on the circle, Rocky
Mountain J. Math. 25, (1995) 1149-1163.

[14] T. M. Morton: Improved error bounds for solving pseudodifferential
equations on spheres by collocation with zonal kernels, Trends in Ap-
proximation theory (K. Kopotun, T Lyche and M. Neamtu (eds)),
Vanderbilt University Press, (2001) 1-10 .

[15] C. Miiller: Spherical Harmonics, Lecture Notes in Mathematics Vol
17, Springer-Verlag, Berlin, (1966).

[16] A. Ron and X. Sun: Strictly positive definite functions on spheres in
Euclidean spaces, Math. Comput. 65, (1996) 1513-1530.

[17] M. Schreiner: On a new condition for strictly positive definite functions
on spheres, Proc. Amer. Math. Soc. 125, (1997) 531-539.

[18] Schoenberg: Positive definite functions on spheres, Duke Math.

I J.
J. 9, (1942) 96-108.

Addresses:

Simon Hubbert

Department of Mathematics
Imperial College

London, SW7 2BZ

England

Tanya M. Morton
The Mathworks Ltd
Matrix House

Cowley Park
Cambridge, CB4 0HH
England



	Cover.pdf
	hubbert4.pdf

