
BIROn - Birkbeck Institutional Research Online

Chouliaras, Spyros and Sotiriadis, Stelios (2020) Real time anomaly
detection of NoSQL systems based on resource usage monitoring. IEEE
Transactions on Industrial Informatics 16 (9), pp. 6042-6049. ISSN 1551-
3203.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/30971/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/30971/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Real time anomaly detection of NoSQL systems
based on resource usage monitoring

Spyridon Chouliaras and Stelios Sotiriadis

Abstract—Today, with the emergence of the industry revolu-
tion systems such as Industry 4.0, Internet of Things and big
data frameworks pose new challenges in terms of storage and
processing of real time data. As systems scale in humongous
sizes, a crucial task is to administer the variety of different
sub-systems and applications to ensure high performance. This
is directly related with the identification and elimination of
system failures and errors, while the system runs. In particular,
database systems, may experience abnormalities related with
decreased throughput or increased resource usage, that in turn
affects system performance. In this work, we focus on NoSQL
database systems, that are ideal for storing sensor data in the
concept of Industry 4.0. This typically includes a variety of
applications and workloads that are difficult to online monitor,
thus making anomaly detection a challenging task. Creating a
robust platform to serve such infrastructures with minimum
hardware or software failures is a key challenge. In this work,
we propose RADAR, an anomaly detection system that works
on real-time. RADR is a data-driven decision-making system
for NoSQL systems by providing process information extraction
during resource monitoring and by associating resource usage
with the top processes, to identify anomalous cases. In this work,
we focus on anomalies such as hardware failures or software bugs
that could lead to abnormal application runs, without necessarily
stopping system functionality e.g. due to a system crash, but
by affecting its performance e.g. decreased database system
throughput. Although, different patterns may occur through
time, we focus on periodic running workloads (e.g. monitoring
daily usage) that are very common for NoSQL systems, and
Internet of Things scenarios where data streams are forwarded
to the Cloud for storage and processing. We apply various
machine learning algorithms such as autoregressive integrated
moving average (ARIMA), seasonal ARIMA and long-short-term
memory recurrent neural networks. We experimentally analyse
our solution to demonstrate the benefits of supporting online
erroneous state identification and characterisation for modern
applications.

Index Terms—Anomaly detection, Real time analytics, Cloud
Computing, NoSQL systems.

I. INTRODUCTION

TODAY, data streams from Internet of Things and Industry
4.0 modern factories are becoming massive in terms of

volume, variety and velocity that are generated and stored.
A common practice for storing semi-structured dataset is the
use of NoSQL systems that provide flexible storage ways,
enough to deal with massive amounts of data [1], while at

S. Chouliaras is with the Department of Computer Science and Information
Systems, Birkbeck, University of London, Malet St, Bloomsbury, London
WC1E 7HX, UK e-mail: s.chouliaras@dcs.bbk.ac.uk.

S. Sotiriadis is with the Department of Computer Science and Information
Systems, Birkbeck, University of London, Malet St, Bloomsbury, London
WC1E 7HX, UK e-mail: stelios@dcs.bbk.ac.uk.

Manuscript received July 31, 2019; revised October 25, 2019.

the same time are easy to scale up and manage, comparing to
monolithic database systems. A key challenge is to support
robustness and reliability of cloud systems with respect to
hardware and software failures, especially when the system
scales up in massive cluster sizes. Therefore, efficient ways
on detecting abnormalities are more important than ever as
anomalies can affect performance and provoke unreasonable
energy consumption, that in turn results to false scaling esti-
mation. In addition, abnormal patterns are a strong indicator
of cyber-attacks from unauthorised users [2].

In this work, we develop RADAR, a system for real time
anomaly detection in NoSQL databases based on monitoring
resource usage on real time. To achieve it, we analyze histori-
cal data for resource usage metrics (CPU, memory, disk usage
etc.) and we train different machine learning models to gen-
erate patterns, such as (a) Autoregressive Integrated Moving
Average (ARIMA), (b) Seasonal ARIMA and (c) Long-Short-
Term Memory Recurrent Neural Networks. RADAR uses a
pattern recognition model further allow us to support a signal
similarity process to identify future system abnormalities on
the fly. We rank the various models, to ensure we select the
most accurate model for various cases. The predicted signal
(generated from the previous mentioned models) is used as a
representative wavelet to detect future abnormalities. To move
a step forward, we compare new signals using the Dynamic
Time Warping (DTW) method as in [3] and in [4]. The
algorithm maps the representative and the new wavelet (that
is real time generated) in order to classify it as normal or
abnormal based on a threshold.

We developed an experimental system based of NoSQL
databases to generate real time workloads using the Mon-
goDB system. To create a real-world case scenario, we use
the Yahoo! Cloud Serving Benchmark (YCSB) [5]. At the
same time, NoSQL applications are monitored by collecting
different information such as CPU percentage, Virtual Memory
percentage, Disk usage and information for each process
separately. The process information associates abnormal runs
with the cause of event and provides an added feature that is
key to increase models accuracy.

The contribution of this work is on the comparison of
different machine learning models to design patterns for
NoSQL system runs and characterise them according to re-
source usage monitoring and process information extraction.
We experimentally demonstrate that the LSTM-RNN model
(that is a sequence learner) provides the best performance
by offering better accuracy in terms of the root mean square
error. Our experimental analysis is based on a combination of
read and write operations of YCSB workloads to demonstrate



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

realistic runs.

II. MOTIVATION

Industry 4.0, Internet of Things and data streaming systems
are usually related with semi-structure datasets and require fast
and efficient data storage such as NoSQL systems. Modeling
periodic workload executions of NoSQL systems is a chal-
lenging task, mainly because of the variety of workloads and
varied user requests. Our method based on the the assumption
that workload types of applications are known and NoSQL
systems can generate resource usage patterns that are recurrent
due time, thus to support this we present a preliminary
experimental analysis. The experiment includes the execution
of the YCSB workload in a MondoDB VM to explore its
behaviour. Figure 1 illustrates the use of a YCSB workload
and the variations created on the VM’s CPU usage percentage
over 70 minutes period of time. We used a YCSB workload
that includes 200 thousand records with 50% read and 50%
write operations in order to create a single wavelet. Thus,
generating 14-th wavelets over the 70 minutes period needed
about 2.8 million of records to be loaded and executed in
the NoSQL application. As shown in Figure 1, we observe
that patterns (also called predicted wavelets) are repeatable
and modelling such a signal could support future predictions
on unseen wavelets for anomalous runs. In our case, the
predicted wavelet has been used as a representative wavelet of
all the training signals. A model that can map representative
wavelet to a new unseen wavelet can classify it as normal or
anomalous, according to the ”difference” (in terms of signal
similarity) among wavelets. This demonstrates the importance
of creating a contiguous run of normal patterns in our system.

Fig. 1. CPU Usage percentage over YCSB workload

Figure 2 shows both normal and abnormal signals over 90
minutes period of time. After the 14-th wavelet, four new
abnormal wavelets have occurred in the system and caused
a sharp increase to CPU usage that surpasses 95% percentage
point for a significant period. To demonstrate this, between
the 11 : 40 and 12 : 00 time instances, we ran the YCSB
workload simultaneously with a stress workload (using CPU-
bound tasks) in order to further overload the system and create
synthetic abnormal signals. We can easily observe that the last
4 signals are significantly different than the previous, however
there is no clear definition whether the signals are abnormal
or not. Especially, from the perspective of the application, a
common abnormality could be an affection on the throughput,

however this classification cannot happen with the current
experiment.

Fig. 2. CPU Usage percentage over YCSB workload and stress package

To further identify abnormalities, we ran an experiment by
monitoring the CPU percentage of a VM while running the
YCSB workload. As shown in Figure 3, a NoSQL application
has been deployed on Cloud and measured based on the
resource usage, process information and data throughput. At a
point (time instance between 11:54 - 11:56) an abnormal run
has been introduced to the system, by stressing the system
with a highly CPU intensive daemon process. We executed a
YCSB workload with 200 thousand records by running in a
small size VM (2 CPU Core,40 HD Disk, 4GB RAM). The
YCSB configuration includes a 50% reads and 50% writes to
create CPU usage variation in different time periods. The CPU
usage pattern can be identified in the first part of the wavelet.
To further demonstrate the process information extraction,
we label the process with the maximum CPU percentage
that specific moment. The latter points out the process that
contributed the most in that period of time and can be a further
criterion to understand what caused abnormal behaviours.

While the system is under stress, the wavelet pattern
changes and the stress process (as shown in the graph)
generates the maximum CPU usage. In particular, 11:41 -
11:54 demonstrates normal runs while 11:54 - 11:56 shows
an abnormal run that caused a substantial increase to CPU
usage. The labels can show that stress process generates
this abnormality. We expect that this analysis will provide an
important feature for the machine learning model.

Fig. 3. CPU percentage over YCSB labeled by maximum process CPU

To explore further how abnormal run affects the application
performance, we measure the throughput of a MongoDB



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

Fig. 4. YCSB Workload Average read operations

storage system. Figure 4 shows the average operations in
MongoDB, at the same time period as the data shown in Figure
3. We can observe that the stress package does not create
abnormalities only in the CPU usage but also in the average
throughput (named as AVG). The average read operations in
the database decreased sharply between 11:54 and 11:56, as in
that time both YCSB and stress were running simultaneously
(e.g. a drop on the throughput from an average of 450 to an
average of 300). We summarize our motivation findings as
follows.

• NoSQL workloads can generate repeatable patterns, that
over time can be similar, thus pattern recognition mecha-
nism can support advanced anomaly detection analytics.

• Process information extraction can further support the
analysis process. By identifying possible abnormal runs,
process name is an important feature.

• Anomaly detection requires constant understanding of
application metrics, e.g., throughput and process data to
define abnormalities with higher accuracy.

Based on this discussion, we present RADAR, a system
to benefit abnormal system identification and characterization
by automatizing the resource usage and process information
extraction on the application side.

III. RADAR: REACTIVE ANOMALY DETECTION
ANALYTICS ON REAL TIME RESOURCE USAGE

MONITORING

RADAR provides is designed as a reactive component, that
can collect data, analyze, on the fly, and generate patterns
accordingly. Figure 5 demonstrates the flowchart of RADAR
deployment that includes the following components.

• The Monitoring Engine: This component includes the ap-
plication and the workload execution. Data are collected
and submitted to the storage system.

• The Storage Node: This component includes the NoSQL
system (MongoDB) for data storage. Data can be popu-
lated by other components.

• The RADAR analyser: This component includes the mod-
els for analysis, including RNN and ARIMA. In addition,
patterns generated by these models are forwarded to the
signal similarity method to identify anomalous runs.

The flow of events is as follows.

Fig. 5. RADAR: System information flow chart

• Line 1, it links the ”Application” (NoSQL systems of
MongoDB) monitored by the engine with the YCSB
workload. The monitoring engine collects different re-
source usage data such as CPU usage, Memory usage,
Disk utilisation as well as process information such as
CPU usage per process, Memory usage per process and
other. Then, the application is benchmarked using the
YCSB workloads and the monitoring engine sends status
information every interval (in our case every 5 seconds)
to the storage node.

• Line 2, it shows the connection of the application with
the storage node that collects the historical data (JSON
format). The storage node continuously receives data
from the monitoring engine while RADAR retrieves data
every specific time interval to be analysed and processed
by the user.

• Line 3, it illustrates the connection of MongoDB node
with RADAR system. At this event, the system is ready
to generate analytics as shown in Figure 1 and illustrate
abnormalities in the application as shown in Figure 2.

• Line 4, it illustrates how the collective time series data
used as an input to different models, such as ARIMA and
LSTM-RNNs models and output predictions about future
abnormalities that may occur. Both models are evaluated
based on the root mean square error (RMSE).

• Line 5, it illustrates how the predictive wavelet, generated
by the models (LSTM-RNNs and ARIMA models), has
been used as the representative wavelet from the dynamic
time warping algorithm.

• Line 6, it demonstrates the way in which RADAR is de-
tecting abnormalities on-the-fly. After the LSTM-RNNs
and ARIMA models have been trained and generated
a representative wavelet, a new test wavelet enters in
RADAR in real time follows a mapping process with the
representative wavelet.

• Line 7 it shows a signal similarity algorithm, such as
the dynamic time warping (DTW) calculates the distance
between the representative and the test wavelet and clas-



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

sifies the latter to be normal or anomalous based on a
specific threshold has been set on by the administrator

IV. EXPERIMENTAL SETUP

This section describes the Cloud deployment and the
datasets used for the experimental analysis. We deployed
a MongoDB system for benchmarking and evaluating the
performance of different models.

The experimental system includes three virtual machines,
each of 6GB RAM, 40HD Disk, 2 CPU Core. The first virtual
machine contains the MongoDB storage system that initialises
the application to be monitored. In order to expose application
on real time workloads, YCSB workloads is executed inside
application, as YCSB offer specific workloads in order to test
and evaluate various databases including MongoDB. For this
work, a YCSB workload with 200 thousand records executed
with 50% read and 50% write operations respectively. The
aforementioned technique caused a realistic work flow on the
system leading to CPU variations, as in Figure 1.

The dataset stored in MongoDB can be grouped into two
categories:

1) Monitoring data for resource usage such as CPU, memory
and disk usage.

2) Valuable information about each process that is running
inside the application. This will allow information extrac-
tion for different scenarios, such as the process with the
maximum CPU utilisation, the working directory of each
process as well as the virtual memory used percentage.

RADAR extracts data from MongoDB storage node into the
system for analysis and visualisation purposes.

V. EXPERIMENTAL SCENARIOS

A. Autoregressive Integrated Moving Average Modelling

Autoregressive Integrated Moving Average (ARIMA) is an
advanced method in order to model time series sequences and
predict unseen future events. There are three parameters in
ARIMA(p,d,q) model, where p is the past values that need
to be used in order to predict future events or the total
autoregressive terms, q is the past forecast errors or the total
moving average terms in order to predict the future values
and d is the order of differencing that needs to be applied
to the sequence to guarantee stationarity. Parameter tuning of
the ARIMA model has been followed in order to find the best
model that produce the least the lowest Root Mean Square
Error (RMSE).

The Autocorrelation Function plots (ACF) and Partial Au-
tocorrelation Function plots (PACF) are necessary graphs
in order to identify the parameters of the ARIMA model
in stationary series [6]. An ACF plots or Correlogram has
been visualised using all lag values with 5% significance
limits for the autocorrelations. Figure 6 shows that lags result
in successive negative and positive auto correlation values.
The latter indicates that time series sequence does not need
differencing as it is sufficiently stationary for modelling. ACF
also demonstrates a periodicity over time series sequence.
A seasonal fluctuation over the period of 58 lags has been
observed where autocorrelations have larger values for the

seasonal lags. Thus, the seasonal component may enhance
model’s performance and accuracy.

Fig. 6. Autocorrelation Function Plot

A PACF plot has been used with all lag values and 5%
significance limits for the partial autocorrelations. The PACF
plot shows the amount of correlation between the variables that
is not explained by their mutual correlations. As for example,
if there is a set of variables Y1 Y2 and Y3 and a variable X
is being regressing over those variables, the partial correlation
between X and Y1 is the amount of correlation between X
and Y1 that is not explained by their common correlations Y2

and Y3. As the PACF plot shows the partial autocorrelations
of all the lags it can point out how many Autoregressive terms
needed to be explained in the Autoregressive AR(p) model and
in ARIMA(p,d,q) model in extend. In this research, different
value of orders have been considered in ARIMA(p,d,q) model
in order to minimise RMSE. Figure 7 demonstrates correla-
tion of the residuals with 5% significance limits for the partial
autocorrelations.

Fig. 7. Partial Autocorrelation Function Plot

Fig. 8. Autoregressive Integrated Moving Average (ARIMA)



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

In addition, the Augmented Dickey Fuller (ADF) is unit
root test that has been used to examine the null hypothesis
of an ARIMA (p,1,0) process being non stationary against
the stationary ARIMA (p+1,0,0) alternative [7]. The Null
hypothesis has been rejected and ADF indicates a stationarity
in time series. The latter has increased the efficiency of the
ARIMA hyper-tuning process while the differencing level has
been set to 0 as the ADF test indicates stationarity in time
series. After a combination of all parameters, a final seasonal
ARIMA (3, 0, 1) model has been selected in order to be trained
over the collective data. The ARIMA (3, 0, 1) model has been
evaluated over the standard deviation of the residuals with
an RMSE = 28.26. The model has been trained over 13
wavelets as the 14-th wavelet has been used as the validation
wavelet to evaluate model’s predictive accuracy.

Figure 8 shows the predicted line (green dot line) that has
been generated from ARIMA(3,0,1) model over the actual
wavelet (blue line). As the graph illustrates, ARIMA model
prediction tries to explain as match variation over the new
unseen wavelet and follows the increased trend of the pattern.
However, the ARIMA could not demonstrate a good fit, which
is maybe a result of the time series sequence size.

B. Seasonal Autoregressive Integrated Moving Average Mod-
elling

ARIMA(p, d, q) model has been used in order to predict
an unseen wavelet of CPU usage and produced an RMSE =
28.26 . The ACF graph revealed a seasonal fluctuation over
58 lags. Thus, a seasonal component has been added into
ARIMA (p,d,q) in order to decrease the RMSE and increase
the accuracy of the model.

After careful considerations and combination of all the pa-
rameters, a final SARIMA(1, 0, 3)(1, 1, 1)58 model has been
been trained and produced a significant improvement over the
standard deviation of the residuals with an RMSE = 9.95.
The model has been trained over the 13-th wavelets and
tested over the last 14-th wavelet. It is worth mentioning the
SARIMA modelling was time efficient as the training phase
was sort.

Figure 9 shows the predicted line (green dot line) over
the actual wavelet between time period . The graph also
illustrates the SARIMA model improvement over the non
seasonal ARIMA model as the green dot line approaches the
actual wavelet more precisely. The seasonal component and the
use of Seasonal ARIMA has decreased significantly the root
mean squared error and predicted accurately the test wavelet
as it shown in Figure 9. However, this research is about to
explore further models for time series data in order to achieve
even better results in CPU usage prediction.

C. Long Short-Term Memory Recurrent Neural Networks
Modelling

LSTM networks have been used in order predict the CPU
usage of an unseen wavelet and create a representative wavelet
to be tested with new unseen patterns. Firstly, time series have
been normalised within the range of -1 and 1 in order to fit
LSTM-RNN model while the activation function that has been

Fig. 9. Seasonal Autoregressive Integrated Moving Average (SARIMA)

used is the hyperbolic tangent tanh function. The LSTM-
RNN model has used as a training set 13-th wavelets and
tested in a new unseen wavelet and evaluated over the Root
Mean Square Error. The model has used Mean Squared Error
(MSE) as the loss function through the training phase. Mean
Squared Error of an estimator is a commonly used regression
loss function that measures the sum of squared distances
between the targeted variable and the predicted variable is
being calculated.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

where n is the number of the total predictions generated by
the model, Yi is the target variable and Ŷi is the predicted
variable.

The LSTM-RNN model has used the adaptive moment
estimation (Adam) as an optimisation algorithm in order to it-
eratively optimise the objective function. Adam is an algorithm
for first-order gradient based optimisation of stochastic objec-
tive functions based on lower-order estimates that are adap-
tive through the training process [8]. Thus, Adam optimiser
promises less memory requirements as it computes only first
and second order of gradients with individual adaptive learning
rates. Table 1 shows different experiments with LSTM-RNN
model where L indicates the number of layers, N indicates the
number of nodes, RMSE the test Root Mean Square Error and
N the total number of parameters that have been used through
training phase. We can observe that as the number of epochs
increases the RMSE is decreasing. We can observe that as the
number of epochs increases, the error reduces accordingly.

TABLE I
EXPERIMENTING WITH NUMBER OF NODES AND EPOCHS OF THE

LSTM-RNN MODEL

Layers Nodes Epochs N RMSE
1L 10 20 491 22.2
1L 50 20 10,451 17.86
1L 50 100 10,451 13.43
2L 50 20 30,651 14.12
2L 50 100 30,651 12.02
2L 50 200 30,651 6.87
2L 50 400 30,651 4.96

The best RMSE = 4.96 has been achieved after using a
two-layer architecture with 50 nodes and training epochs set to



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

400. The total number of the parameters that have been used
through the training phase is 30,651. It is worth mentioning,
that training time has been sharply increased proportionally
with the number of Nodes and Epochs. For that reason, a
batch size of 50 training samples has been used in order
to increase the efficiency of the training phase. The batch
size is the number of samples that are processed through the
network before the model is updated. Figure 10 illustrates
the effectiveness of the LSTM-RNN model to predict a new
unseen wavelet.The 14-th wavelet that has been produced as
shown in Figure 10 (green dot line), approaches the actual
wavelet (blue line) on the desired level.

Fig. 10. Long Short-Term Memory Recurrent Neural Networks prediction

LSTM-RNN, ARIMA and SARIMA models trained based
on resource usage data and generate predictions of future ab-
normalities in the system. As the LSTM-RNN model generates
the least RMSE over the ARIMA and SARIMA models, it has
been used as the primary model for this work. The predicted
wavelet that has been generated by the LSTM-RNN model
has been used as the representative wavelet over all the tested
workloads. This representative wavelet has been used in the
mapping process that tests for anomalies between the new
unseen wavelets.

D. Signal similarity with Dynamic Time Warping

Since the machine learning models have been trained and
can make future predictions, it is important to classify the
new unseen wavelets as normal or abnormal. It has to be
underlined, that LSTM networks have been trained on YCSB
workload and learnt the repeated normal wavelet pattern over
the time as it is shown in Figure 1. Thus, LSTM created a
predicted wavelet that has been used as the representative
wavelet to be test with new unseen wavelets. As the new
pattern reaches the collection data inside RADAR from the
data storage node, a signal similarity model calculates the
difference between the test wavelet and the predicted wavelet.
A mapping process between the predicted wavelet Pi and the
test wavelet Ti is necessary in order to detect abnormalities
to the system. For that purpose, RADAR uses a widely
recognised signal similarity technique called Dynamic Time
Warping to find the relation between the test and the predicted
wavelet.

Figure 11 shows the predicted wavelet (green dot line)
produced by the LSTM model; a model which has been

trained over 13 normal wavelets. Beyond that, a new wavelet
in the system has been classified by DTW algorithm as normal
(blue line) since the distance between the predicted wavelet is
lower than the normal threshold with the . On the contrary,
another wavelet has been detected as abnormal (red line) as
the distance between the predicted wavelet is higher than
the normal threshold. The normal threshold is calculated
to 280, while the normal distance is 170 and the anomalous
distance is 1554, that clearly shows that the latest (anomalous
signal distance) is over the normal threshold, thus is classified
as abnormal.

Fig. 11. Dynamic Time Warping classifies a wavelet as normal (blue line) or
abnormal (red line) based on a normal threshold..

It has to be mentioned, that RADAR enables the user to cus-
tomise the normalthreshold based on system’s functionality.
In this research, the normal threshold equals to 280 thus
wavelets above that limit has been classified as anomalous.

E. Process information on Anomaly Detection

Detecting abnormalities in NoSQL systems enables sys-
tem’s administrators to audit the system more efficient. How-
ever, identifying the problem that has caused the abnormal
behaviour it is still challenging. Application metrics (e.g.
Operations per/sec ) and system metrics (e.g.CPU usage,
Memory usage) gives the auditor information about the error
but in higher level. RADAR focuses on detecting abnormalities
based on system metrics and at the same giving information
to system’s administrators about potential processes that have
caused the anomalous run. While the system is being moni-
tored on-the-fly by gathering important information about the
resource usage, it is also collecting information about all the
running processes in that time interval. Then processes have
been sorted by CPU usage, so that the first process in the array
is the process that needs the most CPU resources in order to
run, the second process needs the second most CPU resources
in order to run and so on. Consequently, data stored in the
database as a a historical record.

After the collection stage, RADAR request data through
specific time intervals for further analysis and visualisation.
Figure 12 shows the CPU usage over 90 minutes and visualise
also process information in that period of time. The graph
gives the ability to the auditor not only observe CPU fluctu-
ations over the time but also inspect which process needed
the maximum CPU resources that specific moment. The latter
explores the causality of abnormal CPU usage behaviour, thus



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

while the CPU usage exceeds the CPU threshold, RADAR
points out the process that contributed the most. In this exam-
ple, RADAR used a CPU threshold of 85%, that means
that process information has been visualised only if CPU
usage exceeds that limit, however, auditors have the ability
to customised the CPU threshold accordingly.

Fig. 12. CPU percentage over YCSB labeled by maximum process CPU

Figure 12 shows labels of different process that caused the
CPU to surpasses the customised CPU threshold. YCSB loads
the workload using Java programming language thus java is on
the major processes that has been pointed out from RADAR.
MongoDB, that has been used as the primary database ap-
plication in this research, has also drained out a significant
amount of CPU while it performs reads and write operations.
The graph demonstrates both, normal and abnormal runs over
a 90 minutes period. Between 10 : 28 − 11 : 38, YCSB
workload was running in order to create normal wavelets
that followed a realistic scenario with normal CPU usage
fluctuations. However, between 11 : 38− 11 : 58, YCSB was
running in parallel with Stress package that created abnormal
wavelets and changed the pattern of a normal run. Stress
package can stress the system based on user’s pre-selected
options while in this case Stress raised CPU usage above the
CPU threshold for a significant period of time. As the CPU
usage has surpasses the CPU threshold, all processes (Java,
Mongod and Stress) have been continuously visualised from
RADAR.

VI. LITERATURE REVIEW

In this section, we discuss approaches and techniques related
with the anomaly detection in Cloud computing systems by fo-
cusing on supervised and unsupervised models by monitoring
system information.

Large scale distributed systems generate massive amounts
of data; thus anomaly detection is a challenging task, in terms
of computational and storage efficiency. In order to tackle
such issues, in [9] authors proposed a Principal Component
Analysis (PCA) based method that identifies deviated data
instances and in parallel reduces the dimensionality of the
generated data. PCA is an advanced dimensionality reduction
technique that maps the data in a lower dimension by keeping
the maximum of the explained variance-covariance of a set of
possibly correlated variables [10]. As their monitoring system
collects time series stream data (such as TCP connection

requests per second from local monitor nodes), a central
coordinator node targets to detect abnormalities in the system.
Their solution tries to tackle the trade-off between the accuracy
of anomaly detection model and the amount of data that need
to be analysed in order to improve the efficiency of the model
as well as enable accurate detection.

In [11] authors have proposed a network anomaly de-
tection technique to prevent the exhaustion of network’s
bandwidth over various denial-of-service attacks (DoS at-
tacks). Firstly, they point out the importance of analysing
bandwidth-utilisation in both types of intrusion detection sys-
tems (IDS) such as signature-based detection IDS or anomaly-
based detection IDS. They used collective data from a known
commercial web server in order to train and evaluate their
model. The training data from the collective dataset have been
used to train both Autoregressive Integrated Moving Average
(ARIMA) and Seasonal Autoregressive Integrated Moving
Average (SARIMA) models and the testing data have been
used for model evaluation based on the normalised root mean
square error (NRMSE) a normalised version of the root mean
square error (RMSE). A threshold parameter has been obtained
over the upper bound of the NRMSE of the testing data.
The anomaly detection technique is based on SARIMA model
prediction over the actual usage. If the NRMSE produced by
the SARIMA model is greater than the threshold, an abnor-
mality has occurred in the system. Their work has successfully
detected attacks based on network bandwidth information.
However, the performance of the anomaly detection system
drops when the bandwidth usage is quite small over long
periods of time as SARIMA model learns to adapt into the
attacks.

In [12], [13] authors propose a novel technique for detecting
anomalies in the cloud based on both application metrics such
as Tweets per Second (TPS) and system metrics such as CPU
utilisation etc. They also used time series production data in
order to evaluate their model performance and accuracy. It
is also important to identify underlying patterns in Twitter’s
time series production data in order to increase the efficacy of
detecting abnormalities. For that purpose, they used time series
decomposition technique in order to decompose time series
into three components, seasonal, trend and residual respec-
tively. Although such techniques are powerful, long term time
series can degrade learning algorithms efficiency and accuracy
as the volume of the data increases linearly through time. The
latter indicates the necessity on finding different techniques in
order to deal with long time series data. In [14] authors have
developed a platform that monitors the system for HTTP traffic
or resource utilisation levels across multiple instances of inter-
cloud applications. Authors analysed resource usage features
and traffic values to trigger autoscaling and avoid system
overloading. Their load balancing framework improved the
elasticity in the IaaS level and highlighted key requirements
of inter-cloud autoscaling platforms.

In [3] authors propose a semantic aware technique based
on both application metrics (e.g. database throughput) and
resource usage data (e.g. CPU, memory etc.) that have been
collected and tagged with the application context. After the
collection stage, Recurrent Neural Networks (RNNs) trained



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

on the pre-labeled data in order to learn different patterns and
predict new abnormal wavelets. They deployed both Apache
Cassandra and MongoDB NoSQL systems in different Virtual
Machines (VMs) and monitored the VMs under intensive
workload periods. To demonstrate a real world scenario for
anomaly detection, the authors executed YCSB workload in
conjunction with different experiments such as fault injec-
tion and resource interference to generate synthetic abnormal
wavelets. Finally, Dynamic Time Warping algorithm has been
used to determine if a new wavelet is normal or abnormal
based on administrator’s threshold (thres norm). If the dis-
tance pointed by the DTW is bigger than thres norm, an
alarm is generated and all the intuitive information about the
anomalous pattern is used to understand the characteristics of
an anomalous flow and prevent future abnormalities.

A lot of research has been contacted in order to improve
energy efficiency in Data Centers around the world [15], [16],
[17]. Amongst other solutions, auto scheduling recommenda-
tion systems have been initialised to improve the efficiency on
cloud systems and reduce unreasonable energy consumption.
Such systems can be based on various parameters such as
application metrics, system metrics, HTTP traffic etc. In [18]
authors focus on forecasting CPU usage of machines in
datacenter using Long-Short-Term Memory (LSTM) Recurrent
Neural Networks as well as autoregressive integrated moving
average (ARIMA) models. In their findings, after training,
hyper-tuning and evaluating both models, LSTM non-linear
time series model outperformed ARIMA model for almost all
combination of its hyper-parameter.

Although, all these techniques have been effectively worked
towards detecting abnormalities on Cloud systems, are mainly
focused on data mining and storage methods. In contrast,
our method focus on the real time anomaly detection by
monitoring resource usage (inspired by the works of [3] and
in [4]). We further explore the information from process
executions to further support the analysis phase. We aim to
associate system runs, with top processes in order to identify
processes that could cause abnormal runs. The proposed
method is developed upon a flexible architecture that supports
information extraction and storage outside of the application
side (e.g. the NoSQL system).

VII. CONCLUSION

We proposed an anomaly detection and prediction system
to identify abnormalities in NoSQL systems by monitoring
resource usage and process information. Our solution provides
useful insights in the information extraction process and the
association of resource usage statistics with the process that
cause increased usage patterns. We explored various solutions
using the YCSB workload and datasets generated by running
different workload configurations (data read and update) in
NoSQL applications to demonstrate how anomaly detection
can identify problems and failures on modern platforms. We
also explored the accuracy between different machine learn-
ing models such as ARIMA, Seasonal ARIMA and LSTM-
RNNs, to identify and predict of future abnormalities based
on historical system usage data. The experimental scenarios

are prosperous, as we observed that the forecasting of CPU
usage using the LSTM-RNN model has shown significant
improvement over the ARIMA and SARIMA models when
assessing the accuracy of models using the root mean square
error. In future, we plan to integrate log data in order to
relate abnormal runs with the cause of event. This will help us
improve the accuracy of our model by classifying abnormal
runs by categories as defined by the application.

REFERENCES

[1] V. N. Gudivada, D. Rao, and V. V. Raghavan, “Nosql systems for big
data management,” in 2014 IEEE World congress on services. IEEE,
2014, pp. 190–197.

[2] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection.” in Ndss, vol. 3, no. 2003.
Citeseer, 2003, pp. 191–206.

[3] A. Bhattacharyya, S. A. J. Jandaghi, S. Sotiriadis, and C. Amza,
“Semantic aware online detection of resource anomalies on the cloud,”
in 2016 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE, 2016, pp. 134–143.

[4] A. Bhattacharyya, S. Sotiriadis, and C. Amza, “Online phase detection
and characterization of cloud applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
Dec 2017, pp. 98–105.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

[6] L.-M. Liu, G. B. Hudak, G. E. Box, M. E. Muller, and G. C. Tiao,
Forecasting and time series analysis using the SCA statistical system.
Scientific Computing Associates DeKalb, IL, 1992, vol. 1, no. 2.

[7] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the aug-
mented dickey–fuller test,” Journal of Business & Economic Statistics,
vol. 13, no. 3, pp. 277–280, 1995.

[8] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[9] L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and
N. Taft, “In-network pca and anomaly detection,” in Advances in Neural
Information Processing Systems, 2007, pp. 617–624.

[10] I. Jolliffe, Principal component analysis. Springer, 2011.
[11] A. Hanbanchong and K. Piromsopa, “Sarima based network bandwidth

anomaly detection,” in 2012 Ninth International Conference on Com-
puter Science and Software Engineering (JCSSE). IEEE, 2012, pp.
104–108.

[12] O. Vallis, J. Hochenbaum, and A. Kejariwal, “A novel technique for
long-term anomaly detection in the cloud,” in 6th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 14), 2014.

[13] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic anomaly
detection in the cloud via statistical learning,” arXiv preprint
arXiv:1704.07706, 2017.

[14] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Vertical and hor-
izontal elasticity for dynamic virtual machine reconfiguration,” IEEE
Transactions on Services Computing, 2016.

[15] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performance in cluster-based systems,”
2001.

[16] L. Wang, F. Zhang, J. A. Aroca, A. V. Vasilakos, K. Zheng, C. Hou,
D. Li, and Z. Liu, “Greendcn: A general framework for achieving energy
efficiency in data center networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 1, pp. 4–15, 2013.

[17] A. Beloglazov and R. Buyya, “Energy efficient resource management
in virtualized cloud data centers,” in Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid com-
puting. IEEE Computer Society, 2010, pp. 826–831.

[18] D. Janardhanan and E. Barrett, “Cpu workload forecasting of machines
in data centers using lstm recurrent neural networks and arima models,”
in 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST). IEEE, 2017, pp. 55–60.


