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ABSTRACT

Traditional dynamic hedging strategies are basetboal information (ie Delta and
Gamma) of the financial instruments to be hedged. We propessvadynamic hedg-
ing strategy that employson-localinformation and compare the profit and loss (P&L)
resulting from hedging vanilla options when the classipgraach of Delta- and Gamma-
neutrality is employed, to the results delivered by what aleel Delta- and Fractional-
Gamma-hedging. For specific cases, such as the FMLS of Cdrizan(2003a) and
Merton’s Jump-Diffusion model, the volatility of the P&L tonsiderably lower (in some

cases only 25%) than that resulting from Delta- and Gamnua-aidy.
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Since the seminal work of Black and Scholes (1973), a grealtafeeffort has been ex-
pended on proposing new models to describe the dynamicsofises under both the risk-
neutral and statistical measures. These models includbadtc volatility or time-changed
models, (Heston (1993), Stein and Stein (1991), Carr and2004)); jump-diffusion models
(Merton (1990), Kou (2002)); and more general jump proce¢stadan and Seneta (1990),
Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003a)).

Non-Gaussian models such as those mentioned above mayybeevsatile at capturing
some of the main characteristics of the distribution of felarsecurities, including skewness,
heavy tails and correlation. However, although these aagacheristics that any model must
take into consideration, there are also the questions of taoprice financial instruments
written on an underlying that follows one of these models o to estimate the relevant
parameters under both the physical and risk-neutral messtiris well-known that for the
majority of non-Gaussian models there is no unique equitateartingale measure (EMM)
under which pricing is performed; exceptions include thediyump size Poisson model.
Therefore proposed models must not only look at the rangdvt s arising from them, but

must also consider how a particular one is chosen, Carr an(R@08b).

Although thepricing of derivative instruments is key in financial modelling, trexlgingof
instruments is at least as important. Large market playarsaoket makers are responsible for
the liquidity of instruments that are traded on a regulardiaghe different exchanges but they
also trade most over-the-counter instruments such as-tadole instruments, exotic options,
and other less liquid assets. Critical to the liquidity oaiéability of these instruments is the
ability to hedge them. Even though the literature seems\e heade a great deal of progress
in providing an abundance of models and identifying how toveste its relevant parameters,

the question of how derivative instruments can be hedgethihgaly been overlooked.



One of the key insights in the work of Black and Scholes (1@r@)Merton (1990) was the
ability to hedge a vanilla optiovh (S t; T1, K1) written on a stocl&, that followed a geometric

Brownian motion, by forming a portfolio

P(St) =Vi(St;T1, K1) —a(S1)§

and making it risk-free by setting(S;t) = 0V (St)/0S at every instant in time. It is well
known that when Iig follows a non-Gaussian process it is not possible for théewof an
option to hedge all the risk by continuously trading in theleying. Therefore, an alternative
approach has been to hedge the option by trading in the wyignd another instrument,
say V»(St; To,Ko), written on the same underlying. This strategy is known akaband

Gamma-hedging. The idea behind this approach is to set upfaljpm

P(St) =Vi(St; Ty, K1) —a(St)S —b(St)Va(St; T2, Ko)

and make it Delta- and Gamma-neutral, in other words, cha@¢) andb(S t) so that

PESYH _ g g 0°P(St)

S iz O

Although, on average, Delta- and Gamma-hedging generalifopns ‘better’ than Delta-
hedging, it still leaves the writer of the option considdyadxposed to large movements in
the underlying stock price. One of the reasons why the tmawit Delta- and Gamma-neutral
strategy may offer very little protection against large miments in the underlying stock price

is because the information upon which the hedging stratpgyates is based on ‘local’ infor-
mation, ie the first and second derivatives of the portfBli§,t) with respect td&g. Hence, as
long as the stock price does not move by a ‘considerable’ atmter the next time-step, for
which the quantitiea(S t) andb(St) are held constant, then the Delta- and Gamma-hedging
strategy will offer reasonable protection to the writerlod bption. However, if the stock price

can jump or exhibit large movements over a small period oétombetween rebalances of the



portfolio, a hedging strategy based on local informatioohsas the Delta and Gamma will

perform poorly.

The main contribution of this article is to propose a new dagitahedging strategy to
hedge financial instruments written on securities thabfla non-Gaussian process. We
generalise the strategy of Delta- and Gamma-hedging bysihgea(St) andb(S;t) based
on ‘non-local’ information, which is obtained by lookingfaactional (non-integer) integrals
and derivatives of the financial instruments in the portfél{S;t). We also show that there
is an interesting connection between some of the most poputgp models for equity and
fractional calculus. Furthermore we show for the first tirhattthe pricing equations for
European-style options, where the underlying follows aenglss of Lévy processes, is given
by what we call the Fractional-Black-Scholes (FBS) equmtthis is a pricing equation with

non-integer derivatives and integral operators, ie foaeti operators.

The rest of the paper is structured as follows: Section dahices the concepts of fractional
integrals and fractional derivatives and proposes a noughihic hedging strategy, based on
fractional derivatives, that can be used to hedge poraliotten on securities that follow non-
Gaussian processes; Section Il describes the family of lpepcesses and looks at specific
cases which have become some of the most important modetsldeg the evolution of
share prices; Section Il tests the dynamic hedging stiegeigentified in section | when
securities follow non-Gaussian processes, including soitige jump processes discussed in
section II; Section IV shows that when it is assumed thatksfwices follow some of the
most popular Lévy-based jump models, for example the CGMYMLS (Carr, Geman,
Madan, and Yor (2002) and Carr and Wu (2003b)), then thermieiquation satisfied by
European-style options written on these stocks satisfgaibnal partial differential equation;

and Section V concludes.



|. A Dynamic Hedging Strategy for Non-Gaussian Securities

The principal purpose of this article is to address the goestf how financial derivatives can
be hedged when the underlying security follows a non-Gauagsiocess. We will propose, and
test, a hedging strategy based on the theory of fractiotedjiation and differentiation. We
start by introducing the fundamental concepts of fractiomizzgrals and derivatives as well
as a generalisation of Taylor’s series that we later emmgaletvelop a new dynamic hedging

strategy.

A. Fractional Calculus

Definition 1 The Riemann-Liouville Fractional Integral. The fractional integral of ordey

of a function {x) is given by
D100 = o [0y v>0, )
and
y 1 b 1
D100 = [0 My y>0 @

wherel is the gamma function.

For details we refer the reader to Miller and Ross (1993) audny (1999):

One way to obtain fractional derivatives is to ‘view’ them@gger derivatives (ie common

differentiation) of a fractional integral.



Definition 2 The Riemann-Liouville Fractional Derivativelf n is the smallest integer larger

than the numbey, then the right and left fractional derivatives of ordgof the function f is

given by
DVf(x)—;d—n X(x— )”‘V‘lf( )d n—1<y<n 3)
alx - r(n_y) an a y y y —y )

and
D) f(x) = (=D° dt b(y—x)”_y‘lf(y)dy n—1<y<n (4)
X7b M(n—y)dx" Jx - ’

where n is a Natural number addis the gamma function.

Note that whera = —c andb = o the Fourier transforms of the right and left fractional

derivatives are given by
F{-=DYf(x)} = (-i&)f(§) and 7 {DLF(X}=(i&)'f(?), (5)

where
T{f(x)}:f(i):/_wejzxf(x)dx and EeC.

There are also different Taylor's expansions based onidrait operators. We present an

example which we later use to develop dynamic hedging gjieege

Proposition 1 Fractional Taylor's Expansion, Samko, Kilbas, and Mariclve(1993). Let
Yo = 0,v1,...,Ym be an increasing sequence of real numbers such @haty, — yk_1 < 1,

k=1,2,....m. Let x> 0, f(x) having all continuous derivatives and introduce the natati

DI £(x) = oDy MYVt DYt (x)



and remark that DV f (x) # oD f(x). Then the generalised fractional Taylor's expansion is

given by

m-1 p{w} f (0)

f(x) = ot e Oy i y)ay ©

& T(1+Y) F(1+Ym) Jo

B. Hedging: Delta and Fractional-Gamma neutral strategy

In practice, the pricing of options is as important as thestjoa of how to hedge them. In
the classical Black-Scholes model the hedging of a podf(5,t), consisting of a European-
style derivativd/; (S t; Ty, K1) expiring atTy and struck aKi, and the underlyin&, is achieved

by continuous Delta-hedging; that is, holding an amawatS;t; T1, K1) /dSof the underlying

S at every instant in time guarantees that the portfolio ik-fiee. In practice however, it
is impossible to employ a dynamic strategy that requirealegizing the portfolio at every
instant in time; therefore rebalances are done discrekay.example, in the Black-Scholes
framework, the less frequently hedges take place the ldlgehedging error will be, due

mainly to the convexity, known as Gamma, of the value of thigoop

Therefore, the classical approach of Delta-hedging a @aytf
P(St)=V(St;T1, K1) —a(St)S, (7)

wherea(St) is the number of share3 held over the time-stejp,t + At), requires thas(St)
is chosen such that the portfolio is Delta-neutral)i¢S;t) /0S= 0. The hedging error will
depend on the size of the higher order terms of the series

1 0°P(Sit)
31 03

RS . PESY o 19°P(SY)

2
ot 3s o g B9

AP(St) = (AS3+---.  (8)

Hence, if itis not feasible or if it is too expensive to hedgeation as frequently as one would
desire, one approach is to use a portfolio as shown in (7)winicludes another instrument

written on the same underlying, and make this new portfatithDelta- and Gamma-neutral.



In other words, form a portfolio consisting of the option te bedged, say1(St;T1,K1),
and then choose an amouwa(iS;t) of the underlying stock and an amowfiSt) of another

instrument, say»(St; T2, K»), that is also written o

P(St) =Vi(St; T, K1) —a(St)S —b(St)V2(St; T2, Kp)

so thatdP(S,t) /0S= 0 andd?P(S;t) /oS = 0.

The rest of this section looks at a new dynamic hedging sfyaté/e must stress that the
hedging strategies we propose below can be applied to hedgnancial instruments and
therefore it is not a pre-requisite that the instrumentsaaitéen on an underlying that follows
a particular stochastic process. In Section lll, the penéorce of the hedging strategies will
be assessed for different models through the use of sirmokgtive will look in detail at the
hedging of call options when the underlying follows a geaindtévy-Stable (LS) process,
geometric FMLS process (both discussed below in sectioant) Merton’s Jump-Diffusion
(MJD) process. We identify that it is sufficient, using paltgarity, to set a static hedge
in order to hedge vanilla options; however, our objectivlisonstruct a dynamic hedging
strategy that will provide insight into the question of howhedge derivatives written on

securities that follow non-Gaussian processes.

Our proposed hedging strategy is based on the generalisgor'$eexpansion (6). The
idea is the following. Given that most of the processes weirstezested in exhibit large
movements or jumps in the underlying stock price, using thssical Delta-hedging strategy
will, on average, expose the writer of the option to largegneg errors even if Delta-hedging
is performed as often as possible. As mentioned above, onp¢onaoceed is to use a Delta-
Gamma-neutral strategy. As a generalisation of this agbrege propose what we call a
Delta- and Fractional-Gamma strategy that instead of ngatkia portfolio Delta-neutral and

Gamma-neutral, makes the portfolio Delta-neutral gDgP(S, t)-neutral with 1< y < 2.



Therefore the aim is to set up a portfoR§S;t) to hedge the optioV;(St; T1,K1) by

trading in the underlying and another option:

P(St) =Vi(St; Ty, K1) —a(St)§ —b(St)Va(St; T2, Ky) 9)

whereV,, i = 1,2, are options written on the underlyilgywith expiry Ty < T, and struck at

Ky andK; respectively. The quantitieSt) andb(St) are the amounts of the underlying
and the option/,(Sit; T, Kz) that must be held in the hedge portfolio. Therefore, if wekloo
at the change in the value of the portfolio using the gerszdlfractional Taylor's expansion

presented in (6) above, witlg = 0, y1 = 1 andy> = y and with 1< y < 2, we obtain

y
dP(S,t) = apézt)ds-l- OS(S::?-(FS;;) (dS>V+ , (10)
and require
a&iwzzﬁf§§w-—a%§§t%xst) (11)
where y )
b(St) = oDgVi(St) —aVi(St)/0SoDsS 12)

 oDAVa(X,t) — OVa(x,t) /0SoDES |
such that the portfolio is both Delta- and Fractional-Garmmaatral, ie

0P(St)

_ y _
s =0 and  oDgP(St) =0.

For the specific instance wheye= 2, the derivativeDLV (S,t) = 82V (S,t)/0<, and this

derives the classical Delta- and Gamma-neutral strategy

_OVi(St) 0Va(St) _ PVy(SY)/0%?

a(Sit) = b(St) and b(St)= 3, (S1) [0S

0S oS (13)

The use of ‘non-integer’ derivatives to hedge a portfolicisiitively appealing because

the fractional derivativeDLP(St), when 1< y < 2, weighs information about the value of



the portfolio in the interval0, S| as opposed to only using localised information at the point
S. Appendix B depicts fractional derivatives of the value ptions written on assets that
follow non-Gaussian processes. For example, Figure 10 sifi@aetional derivatives of an
optionV(Sit; T,K) with T = 10 andK = 100 where the log-stock price follows an FMLS
process of Carr and Wu (2003b) with= 1.5, (see subsection A below where we present the
FMLS model). It is clear from the picture that when the traial measure of Gamma is
very close to zero for stock prices below 90 or above 120, rdetibnal derivatives for values

y={2,1.8,1.6,1.4} still have positive values ranging between 0.01 and 0.25.

Before proceeding it should be noted that it is not necdgdane that performing Delta-
and Gamma-hedging is always ‘better’ than performing Dieéidging. By inspecting series
(8) it may be the case that, even if the second and third temntisei right-hand-side of the
equation are zero at the beginning of the time-step+ At), the higher order terms of the
series are of considerable magnitude; this depends ongheohiler derivatives of the options
Vi(St; T1, K1) andVa(Sit; To, K2).

lI. Jump models

The purpose of this section is twofold. First, since we aterasted in testing the proposed
fractional hedging strategies described above, we inteduclass of jump models known
as Lévy processes and focus on particular members of @ss.clSecond, in section IV, we
show another application of fractional calculus in contins-time finance by showing the

connection between fractional pricing equations and tbegsses presented here.

The use of jump processes to model the dynamics of secundebecome a very popular
tool over the last decade. Although Brownian motion, they-8table (LS) model proposed
by Mandelbrot (1997) and jump diffusion models, (see Me(t®¥00)), belong to the family
of Lévy processes, the work of Madan and Seneta (1990) veafirth to propose the use of

a particular class of Lévy process, known as the Varianaar@a, to model the uncertainty



underlying security prices. A stochastic proc¥ss a Lévy process iKg = 0 and if and only
if it has independent and stationary increments. A simpégatterisation of Lévy processes is
given by the Lévy-Khintchine representation or charastierfunction of the process, which

we present in Proposition 4 in the Appendix.

One fundamental question that must be answered is whatiargkould be employed
when choosing a particular Lévy process to model the emiudf a specific underlying. In
the case of stock prices this question has been asked, andraas at different points in time.
Arguably the most intuitive and theoretically sound chai€a Lévy model for share prices, is
that of Carr, Geman, Madan, and Yor (2002) which is based emstitucture of asset returns.
Their starting point is to replace Brownian motion, as theidg stochastic component in
the formation of prices, with a process that can provide alrigher structure for moments
of high order. The authors justify the choice of the Lévy signw(x), which determines
the frequency and magnitude of jumps in the process, baseaihgle, yet very important,
characteristics observed in the markets. For examplegeinseplausible to expect that the
larger the size of the jump in the stock price, the less fratyehey occur. Conversely, the
smaller the jump size the more frequently they occur. Tioeesfby restricting the choice of
the density of jumps, and imposing the requirement that eeptial moments as well as high
order moments exist, a very simple functional form for thevy. density is arrived at; they
labelled the resulting process the CGMY process. Boyatahand Levendorsi((ZOOO) also
proposed a family of Lévy processes, very similar to the OGballed KoBoL or Damped
Lévy (DL), which was based on the work of Mantegna and Sta(@®00) and Koponen
(1995).

Another interesting choice of Lévy process to model eqpitges is in the recent work of
Carr and Wu (2003a). They show that one way to capture the $&gumture of the implied
volatility of S&P 500 option prices is by assuming that thedks to the log-stock process
follow a maximally skewed LS process; they christened thesEinite Moment Log Stable
process (FMLS).

10



We now proceed to discuss LS processes for the first time anill become clear that
the other processes (CGMY, DL, KoBoL) can be ‘constructgditroducing an exponential

damping in the tails of the LS process.

A. Stock Price Models

We first look at the LS model introduced by Mandelbrot (1997)he 1960s. His choice of
model was driven by two important considerations. Empiljc&aussian models do not fit
data well due to the fast decay of the tails. Theoreticdliynderlying security prices are the
cumulative outcome of many small independent events thethebGeneralised Central Limit
Theorem, Feller (1966), their cumulative behaviour is ahtarised by a limiting distribution;
namely the LS distribution. One of the most important startmgs of working with LS
processes, with the exception of the Gaussian case, isahatee is infinite and exponential
moments, unless the distribution is maximally skewed, doexast. If X; is an LS process

then the behaviour of its jumps is determined by the Lévysign

—1-a

Cqlx| for x < 0,

W|_5(X) =
Cpx 1@ forx>0,
and the natural logarithm of its characteristic functiogigen in terms of the parameteuns

K, B andm by

—tk9|€|? {1 —iBsign&)tan(at/2)} +imtE for a # 1,

INE[¥] =tW(E) = i
NE[e™] =tW(E) _tK|E|{1+2I_nﬁsig,~(§)|n|g|}+imt§ for ot = 1.

(14)

If the random variablX belongs to an LS distribution with parameter, 3, m, we write
X ~ S (K, B, m). The parameten is known as the stability index or characteristic exponent,
is a scaling paramete,is a skewness parameter ands a location parameter. We note that if

Xis an LS random variable with characteristic exponeatd< 2, then for the caseQ a <1

11



the random variablX does not have any integer moments and for the casetl< 2 only
the first integer moment exists. When= 2 the random variablX is Gaussian. Moreover,

exponential moments are finite wh¥ns maximally skewed to the left, g= —1.

As mentioned above, another process that has rapidly beaoragy powerful model for
financial securities is the CGMY. This process is a pure jurdpylLprocess (ie it has no

Brownian motion component) with Lévy measW&dx) = weemy(X)dX

ceM forx <0,
WeaMy(X) = M (15)
Cémv forx>0,

and log-characteristic function given by
tWeamy(E) = tCT(Y) {(M—i&)Y —MY + (G+i§)" —G'}. (16)

HereC > 0,G >0, M > 0 andY < 2.3 The paramete€ may be viewed as a measure of the
overall level of activity. The paramete@&andM control the exponential decay of the left and

right tail respectively. Moreover, whed = M, the distribution is symmetric.

Finally, the DL or KoBoL process is also a pure jump Lévy meswith Lévy density

WDL(X) = (17)

Calx| 1 %e M forx <O,
Cpx 1% ™  forx>0,

whereas in the LS case,0a <2,C>0,A >0 andp,q > 0 with p4+q=1. The log-

characteristic function is given by

tWpy (&) =tk {P(A —i&)% +q(A +i&)* =A%} +imte,

(18)
tWpL (§) =tk {p(A —i&)® +q(A +i&)* — A —i&ar* }(q— p) } +imtE,

for 0 < a < 1 and for 1< a < 2 respectively.

12



When X belongs to a DL distribution with parametess K, p, g, m and A we write
X ~ DLq(K, p,g,m,A) and the parameters have a similar interpretation as in thpra&ess.
Note thatA introduces an exponential damping in the tails of the distion and the DL and

LS are the same when= 04

Before testing the proposed fractional hedging strategessust also discuss the connec-
tion between the risk-neutral and statistical dynamic#iefstock price. The pricing of finan-
cial instruments, where the underlying security is modeli& exponential Lévy processes,
is not as straightforward as that based on Brownian motioarkkts are not complete when
there are jumps in the underlying stock price and therefoegetis no unique martingale
measure under which prices are calculated. It is the market‘@hooses’ the correspond-
ing risk-neutral EMM. Moreover, in theory, hedging stragsgcould be constructed where
every possible jump in the underlying is hedged with anofimancial instrument. However,
this seems impossible in practice since a continuum of optwould be required for such a

strategy to work.

In the Lévy process literature it is generally assumed ttiatunderlying security follows
both a Lévy process under the physical and risk-neutrakorea and different EMMs have
been proposed to link these two measures. One simple methigdive an EMM is to assume
that the process under both the physical and statisticabunea has the same shape but a
different location. Another method is to use the Esscharsfam, see Schoutens (2003),
Cont and Tankov (2004).

In the case of the CGMY process, Carr, Geman, Madan, and Yifi2j2assume that
log-stock prices follow a CGMY process under the statistécal physical measures where
the risk-neutral parameters of the stock process,Gag, M andY, may differ from their

statistical counterparts, G, M andY.

Finally, McCulloch (2003) showed that, if it is assumed thatler the physical measure
asset prices follow a geometric LS process (with no resinain the skewness of the distrib-

ution of the LS shocks), then the pricing of derivatives urttie risk-neutral measure can be

13



performed by assuming that the logarithm of the underlyoigp¥vs a combination of two in-
dependent processes: a maximally negatively skewed mdiecthe FMLS) and a maximally

skewed to the right DL process (= 1 in (18)).

l1l. Simulations

In this section we test how our Delta- and Fractional-Ganmeatral strategy performs. We
have assumed that there are no transaction costs and thaatkets are liquid. For illustrative
purposes we will compare the profit and loss (P&L) obtainednfhedging a portfolio using
the fractional strategy proposed above, with the reswisrdoy performing the more common
Delta- and Gamma-neutral strategy. For completeness, seeshlow what happens when
only Delta-hedging is employed and in Appendix C we show howwaluate the fractional
derivatives used in the hedging strategies. We look in datahe FMLS process, the LS

process, and the MJD process.

A. Hedging in the FMLS model

Here we illustrate how the Fractional-hedging strategygeers when compared to simple
Delta-hedging and to the more common Delta- and Gammaaldedging strategies, when
the log-stock process follows an FMLS process. In this mtuektatistical dynamics of the
stock price are given by

d(In§) = pdt+ odLEMLS

and under the risk-neutral measure it follows
d(InS) = (r +0%sedarn/2))dt+odLf M-S

wherep > 0,dLfMS ~ 5, <dt1/°‘, —1, O) is a maximally skewed LS motion and<la < 2.

14



In order to test the proposed dynamic strategy we must stmpléce paths for the maxi-
mally skewed LS motion. The shocks to an LS motion are givenAby®@ where
@~ S(1,B,0) andAt is the time-step. Skewed LS random variables can be comett iy
combining symmetric LS; Proposition 6 in Appendix D showsvheymmetric LS random

variables can be generated.

Figure 1 shows a histogram of the P&L function of a portfohatthas been Delta-hedged
daily for a European call option expiring in one month,Tie= 20 working days. The log-
stock price follows an FMLS process with= .05,0 = 0.20,3 = —1 anda = 1.5. We have
assumed that = 0, S = 100,K; = 100, that the stock pays no dividends, and we have per-
formedN = 10,000 simulations. As expected, performing Delta-hedgingasenough to
hedge the frequent and often sizeable jumps in the undgrly@n average, the P&L of the
Delta-hedged portfolio is £ -0.06 but with a standard désredf 5.01 and values ranging from
min= £ -94.75 to max= £ 2.43. Although it is impossible to heddl of the jumps in the
underlying, one possibility is to hedge the portfolio, usia second option written on the
same underlying, by making it Delta- and Gamma-neutral. Sdéwond option used in the
hedge portfolio had an expiry date ©f = 25 working days and a strike &, = 100. Fig-
ure 2 shows the results for this strategy. As expected, sigcare using two instruments
in the hedging strategy, the results are considerably oistée those resulting from simple
Delta-hedging. On average the P&L function of the Delta- @anma-neutral portfolio is
£ -0.007 with a standard deviation of 1.58 and values rangegtgveen min= £ -57.69 and
max= £ 46.10. Finally, Figure 3 shows the results from emplppur proposed Delta- and
Fractional-Gamma-neutral strategy wjtk- 1.5. The improvement over the traditional Delta-
and Gamma-neutral strategy is substantial. The fractistnategy considerably reduces the
exposure to large movements in the underlying. The meaneoP&L function is £ -0.0004
with a standard deviation of 82 and values ranging from min= £ -8.03 to max= £ 18.16. Ta-
ble | summarises these results and also shows the resufidfsdta- and Fractional-Gamma
hedging for a range of values between 1.1 and 1.%.fdris important to note that the frac-

tional strategy that delivered the smallest standard teviaf the P&L wasy = 1.5 and the
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FMLS Delta hedging, a=1.5
T

140

Mean= —0.060
STD= 5.01
Max= 2.43
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Figure 1. Daily Delta-Hedging. P&L resulting from daily Delta-hedging under the assump-
tion that the stock price follows an FMLS process.

one that delivered the highest lower bound for the P&L wastie performed using= 1.6.
Moreover, we repeat the simulations but vary the strikegpatthe second option. Table II
summarises the results from usidg = 95 and Table Il from usindgl, = 105. In both cases

the fractional strategies deliver better results than@elhd Gamma-hedging.

FMLS,a =1.5,% = 100,K; = 100,K, = 100,T; = 20, T, = 25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0029 -0.0028 -0.0025 -0.0016 -0.0004 0.0034 0.0p830070 -0.0604
STD | 0.5191 0.5113 0.4937 0.4606 0.4288 0.4853 0.6/415894 5.0198
Max | 21.02 20.77 20.30 19.57 18.16  20.70  25.4046.10 2.43
Min | -12.77 -12.39 -11.55 -9.99 -8.03 -7.78  -12.81:57.69 -94.75

Table |
P&L statistics from N = 10,000simulations. We show Delta- and
Fractional-Gamma-neutral strategies for variousy's and the last two columns show the
Delta-Gamma-neutral strategy (iey = 2) and Delta-neutral strategy respectively.
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FMLS Delta—Gamma hedging, a=1.5
T T T

250

Mean= —0.007
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i
[
o

Frequency

100

50

o
Profit and Loss

Figure 2. Daily Delta- and Gamma-Hedging.P&L resulting from employing a Delta- and
Gamma-neutral strategy when the underlying follows an FML&ess.

FMLS Delta—Fractional-Gamma hedging, a=1.5, y=1.5
T

150 T T T T
Mean= —0.0004
STD= 0.42
Max= 18.16
Min= —8.03
100 - -
>
3
=
]
S
=
1=
[
50 - -
o ! 1 i L !

—-20 —15 —-10 -5 o 5 10 15 20
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Figure 3. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from employing a
Delta- and Fractional-Gamma strategy when the underlyoiigfs an FMLS process.
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FMLS,a =1.5,$% =100,K; =100,K; =95,T1 =20, T, = 25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0284 -0.0285 -0.0288 -0.0295 -0.0312 -0.0339 -0.03-0811540 0.0946
STD | 1.6325 1.6281 1.6187 1.6011 1.5774 15729 1.62%H7067 4.0185
Max | 49.54  49.24  48.49 46.69 42.82 37.35 41.47197.87 2.46
Min -5.29 -5.24 -5.23 -5.22 -5.22 -5.27 -6.18 -30.57 -81.00
Table Il

P&L statistics from N = 10,000simulations. We show Delta- and
Fractional-Gamma-neutral strategies for variousy's and the last two columns show the
Delta-Gamma-neutral strategy (iey = 2) and Delta-neutral strategy respectively.

FMLS, a =1.5,% = 100,K; = 100,K, = 105,T; =20, T, =25

y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| 0.0017 0.0017 0.0017 0.0016 0.0015 0.0011 0.0D€@20043 0.0087
STD | 2.3193 2.3166 2.3097 2.2936 2.2614 2.2136 2.1/@54742 4.6324
Max | 4.07 4.07 4.06 4.03 3.96 3.79 3.97 1.64 2.37
Min | -45.56 -45.52 -45.39 -45.07 -44.36 -43.21 -420456.82 -89.84

Table I1I
P&L stati

stics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy

respectively.

B. Hedging in the LS model

Here we assume that under the physical measure the pricegsréallows a geometric LS
process

d(In§) = pdt+odL-S,

(19)

wheredLHS ~ S, (dtY/9,B,0) with 0 < a <2, -1 <B <1, u> 0 ando > 0. Under the
risk-neutral measure, see (D9) in the appendix, it folldwet t

d(Ing) = (r — Ba® sedar/2))dt+ odi-S+ odC Pt
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whered( S anddiP" are independent and as stated in (D10). This is not only andsting
case from a financial point of view but also one that can be tessiless-test hedging strategies
given the heavy tails of the process. As mentioned earhershocks to the stock dynamics

shown in (19) above, have infinite variance and exponentigthents do not exist.

We proceed as above and compare the results of hedging adaurcpll option, (where
S = 100,K1 = 100 andT; = 20) with a second option (wheke = 100 andT, = 25), using
the Delta- and Fractional-Gamma-neutral strategy, wigmtlore familiar Delta- and Gamma-
neutral strategy. For illustrative purposes we simulabelsprices using Proposition 6 (in
Appendix D) whermt = 1.7, 3 = —0.5, p= 0.05 ando = 0.20. Moreover, for simplicity, we

assume that the risk-free rate- 0 and that the stock pays no dividends.

Figures 4, 5 and 6 show histograms of the P&L and Table IV sunsesthe results of
the simulations using a range of fractional derivatives. Aighlight that in this case we can-
not show the standard deviation of the P&L since, under thesiphl measure, exponential
moments of the log-stock price do not exist. Note that whenttaditional Delta- Gamma-
neutral strategy is employed, assumikg= 100, the resulting P&L is within the interval
[—10146,63004] which contrasts sharply with the range5.45,7.70], obtained when frac-
tional strategies are used wih= 1.4. Moreover, Table V shows the results from another set
of simulations assuming that the strike of the second opsiha = 105. In this case the Delta-
Gamma-neutral strategy delivers P&L results within thenwnal[—41.66,452 15 whereas for
all the fractional strategies the resulting P&L lie betwéeB9, 81].
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LS Delta hedging, a=1.7, B=-0.5
T

300 T T
Mean= -0.508
250 - Max=  2.34 T
Min= -4,353
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Figure 4. Daily Delta-Hedging. P&L resulting from using the Black-Scholes Delta-hedging
strategy.

LS Delta—Gamma hedging, a=1.7, B=-0.5
T T

100
920 - —
Mean= 0.050
Max= 630.04
80 - Min= -101.46 T

Frequency

o
Profit and Loss

Figure 5. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.
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LS Delta—Fractional-Gamma hedging, a=1.7, =-0.5
100 T T

90 - -
Mean= —0.002
Max= 7.70

80 - Min= —-5.45 I

70 - =

60 - =

50 - =
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10 =

Yrm
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Figure 6. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy with- 1.4.

C. Hedging in the MJD model

Here we show how Delta- and Fractional-Gamma-hedging coespa Delta- and Gamma-
hedging when the underlying security follows a jump difrsmodel as proposed by Merton

(1990). This model proposes that under the physical meaSuialows

g—s = pdt+ odW + (J—1)dg

wherepis a constanty > 0, dW is the increment of a standard Wiener process a Poisson
process with intensity parametgr andJ; is a sequence of i.i.d. random variables such that

InJ ~ N(uJ,oﬁ) andW, g; andJ;’s are independent.

We assume that under the risk-neutral measure the stoakfptiows
== (r — Z0% - \(Ey[J] - 1)) dt+odW + (J— 1)dg

wherer is the risk-free rate andW is the increment of Brownian motion.
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LS,a=17,=-0.5,%=100,K; = 100,K2 =100,T; = 20, T, = 25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0073 -0.0069 -0.0059 -0.0027 0.0050 0.019 0.039.055 -0.508
Max 7.19 7.25 7.40 7.70 63.70 190.00 362.7/330.04 2.34
Min | -37.18 -34.51 -25.77 -5.45 -5.89 -8.62 -12.80101.46 -4,353
Table IV

P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (ie/ = 2) and Delta-neutral strategy

respectively.

LS,a=17,=-0.5,S=100,K; = 100,K, = 105,T; = 2

0, T, =25

y=11 y=12 y=13 y=14 y=15 y=16 y=17

y=2 Delta

Mean| 0.0268 0.0269 0.0270 0.0274 0.0285 0.0306 0.08871069 -0.0449

Max | 74.47 74.67 75.12 76.04 77.62 79.47 80.83152.15 2.53

Min -38.46 -38.37 -38.17 -37.73 -36.93 -35.82 -34,9241.66 -199.12
Table V

P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (ie/ = 2) and Delta-neutral strategy

respectively.

Table VI shows results from = 10,000 simulations for the MJD model with parameters

n=.05,0=0.2,0;=0.2, =0 and assuming that the stock price jumps on avelage

5 times per year. As above, we have assumedrthat0, Ty = 20, T, = 25, K1 = Ky =
100 andSy) = 100. It can be appreciated from the results that the Del@actiemal-Gamma

strategy with 11 <y < 1.7 delivers considerably better results than the Delta- Gameutral

strategy. Figures 7 and 8 show the histograms for the P&Utregdrom the simulations for

Delta hedging and Delta- and Gamma hedging. Figure 9 shawvsistogram for Delta- and

Fractional-Gamma hedging whgnr= 1.1. This value delivered the lowest volatility, which is

approximately 30% of the volatility of the P&L resulting frothe classical Delta- and Gamma
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MJD Delta hedging
70 T T
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Mean= —0.0173
STD= 5.56
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Figure 7. Daily Delta-Hedging. P&L resulting from using the Black-Scholes Delta-hedging
strategy.

hedging strategy. Moreover, Tables VIl and VIl show sintiglas for the cases wheke = 95

andK, = 105 respectively.

MJD, & = 100,K; = 100,K, = 100,T; =20, T, =25,A=5
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| 0.0005 0.0004 0.0001 -0.0008 -0.0033 -0.0086 -0.01680521 -0.0173
STD | 0.7453 0.7465 0.7492 0.7582 0.7975 0.9361 1.23064194 5.5602
Max | 10.07 10.23 10.66 11.66 13.67 16.48  21.8941.90 3.74
Min | -9.87 -10.08 -10.60 -11.86 -14.83 -20.99 -31.5368.28 -74.14

Table VI
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy’s and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy
respectively.
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MJD Delta—Gamma hedging
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Figure 8. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.

MJD Delta—Fractional-Gamma hedging

70 T T
60 - B
Mean= 0.0005
STD= 0.745
Max= 10.07
50 Min=  —9.87 -
~. 40| B
3
2
D
3
=
I
" 30t -
20 - B
10 -
o L L AL L il | L L
—60 —40 -20 o 20 40 60

Profit and Loss

Figure 9. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy with- 1.1.
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MJD, § = 100,K; = 100,Kp =95,T1 =20, T, =25,A=5
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0044 -0.0043 -0.0043 -0.0044 -0.0048 -0.0060 -0.00850282 -0.0418

STD | 2.66 2.66 2.66 2.65 2.66 2.69 2.78 8.42 5.44
Max | 23.94 23.77 23.36 22.38 20.48 19.26 22.2863.53 3.80
Min | -38.45 -38.51 -38.65 -38.96 -39.57 -40.47 -41.0651.11 -55.57

Table VII
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (ie/ = 2) and Delta-neutral strategy
respectively.

MJD, & = 100,K; =100,K, = 105,T1 =20, T, =25,A=5
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0483 -0.0485 -0.0489 -0.0499 -0.0519 -0.0547 -0.054B0899 0.030Z

STD | 2.49 2.49 2.50 2.54 2.62 2.77 3.02 12.96 5.35
Max | 38.71 38.86 39.20 39.85

40.88  41.87 48.07321.89  3.98
Min | -23.36 -23.32 -23.26 -23.21 -23.30 -23.86 -38.5658.27 -67.43

Table VIII
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy’s and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy
respectively.

I\VV. Other Applications: Fractional Black-Scholes equatins

The pricing of European-style options written on assetsfthibow non-Gaussian processes,
such as Lévy processes, has become a very straightforagitavhen transform methods are
used, Carr and Madan (1999) and Lewis (2001). On the othet, kthough progress has

been made with regards to the pricing of other types of optisach as American and exotic,
there is still scope to develop better and more accurateadsth
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Although until now the theory of fractional calculus had r@en applied to the field
of finance, there is a wealth of literature, and associatadinigs, from the theory of frac-
tional differential equations that may prove useful in ljpto solve current problems in
continuous-time finance. Therefore in this section we shioatteer way in which financial
instruments are closely related to fractional calculus.sWew that if the risk-neutral dynam-
ics of the log-stock process follow a Lévy process such asglecific cases discussed above
in section I, then the corresponding pricing equationssigiil by instruments written on these
assets satisfies a FBS, which is a pricing equation withitnaat derivatives or fractional inte-
grals. Below, we use the following proposition to show thergection between these families
of Lévy processes and their corresponding FBS equatioh& pfoposition shows that the
(Fourier transformed) value of a European-style optionemghthe underlying follows a Lévy

process, satisfies an ordinary differential equation (QDE)
Proposition 2 The Pricing ODE.Let x = InS follow, under the risk-neutral measure,
dx = pdt+ odLy, (20)

where $is the underlying stock price, p aralare constants and dLis the increment of a

Lévy process with log-characteristic functig{§). Moreover, we let
V(E ) = / ¥V (xt)dx,  with EeC,

denote the Fourier transform of the value of a Europeanestpttion with final payoffl (x7,T).
ThenV (&,t) satisfies the ODE

A

V(1)
ot

= [r+igu-W(-HNV (D), (21)
with boundary conditioV (£, T) = (&, T).

For a proof see Appendix D.
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Here we show that if the risk-neutral dynamics of the stodgepiollow a LS, CGMY, DL
or KoBoL process then the pricing equation satisfied by Eeaopstyle derivatives contains

fractional derivatives and integrals.

Proposition 3 The Lévy-Stable FBS equationLet the log-price x= InS process follow,

under the physical measure, an arithmetic LS process
dx = pdt+odL->,

where dItS ~ S (dt1/®,3,0) is the increment of an LS process withc a < 2, -1 < B < 1,
o > 0and pis a constant. Then the value of a European-style optitbrfinal payoffil (xr, T)

satisfies the following fractional differential equation

BV (%) avg,t) +(r — Bo® sedam/2)) 6V(§§,t) — kS sedaTy/2) _DIV (x.t)
+k§ sedat/2) (V(xt) — e xDLe "V (x,t)), (22)
where
ngl;ﬁoa and K‘i‘:lizBoa. (23)
For a proof see Appendix D.
Note that the case whaen= 2 and3 = 0 yields
_ OV(xt) VXt 1, 12 2
v (x,t) = 3 +(r—o°) > " 3° _wDXV(x,t)+§o DSV (1)
O OV(xt) » OV (X1) L0V (xt)
= 3 (r—o9) w0 e (24)

which is the classical Black-Scholes partial differenéglation inx, = InS. Note also that
given the parametrisation of the LS distribution we use hetenX ~ $(0,0,0), the ex-
pected valud [X?] = 202. This is the reason why the constant coefficients stéinstead

of the usuab?/2 in the classical Black-Scholes operator shown above.
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Another very important case is when> 1 andf = —1; this is known as the FMLS process

of Carr and Wu (2003a).

European-style options written on an underlying that fefidhe risk-neutral process (D9)
with=-1

d(Ing) = (r + 0% sedar/2))dt + odi S

satisfy the FMLS FBS equation

NV (x,t)

vV (xt) = P

+(r+c%secar/2)) —o%sedamn/2) DIV (x,t).  (25)

oV (x,t)
[1)4

Moreover, to derive the corresponding FBS equation, wherrigk-neutral dynamics of
the stock price are driven by a CGMY process, we proceed agabtie stock dynamics are

given by
wherex =InS and

Wegmy=CI (Y) {(M-1)Y =MY +(G+1)"-G"}. (26)

Hence the CGMY FBS is given by

v(xt) oV (xt)
s = (r+0(M"+G")V(xt) = (1 = Wegmy) —
o™ DY (e™V(x1) +e DY (V)| @)

wherec = CI(-Y).
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Note thatY < 2, so that in the case whel¥e< 0 the fractional operators shown in (27)
are in fact fractional integrals as shown in Definition 1. Eaver, we also need the condition

M > 1 to be satisfied so th&# [Sr| < co.

Finally, for the DL or KoBoL process we proceed as above taiobthe corresponding

FBS equation; see (D13) in the appendix for details.

V. Conclusions

This paper shows that the calculus of fractional operasrslated to some of the most im-
portant jump processes used in the financial literaturegxtample the FMLS, KoBoL, Kopo-

nen’s DL and CGMY. More importantly, we have devised a dyrah@dging strategy based
on fractional operators and tested it for different modéMe have compared our proposed
Delta-Fractional-Gamma hedging strategy with the weltwkn approach of Delta-Gamma-
neutrality and looked in detail at simulations under the BVILS and MJD models. We have
seen that due to the large movements or jumps in the undgryatk price, fractional opera-

tors provide a much better hedge than the traditional Dald-Gamma-neutral approach. It
was argued that since fractional operators take into acdgotormation about the value and

curvature of the portfolio for a range of the stock price bedw zero and the current stock
price, ie[0,S], hedging strategies will perform better according to nestsuch as the range
in which the P&L lies, or when applicable, the volatility dfet P&L. We showed that in cases
such as the MJD and the FMLS the volatility of the P&L is witlire range of 25% to 30% of

that resulting from employing Delta- and Gamma-neutraMgreover, in very extreme cases
such as the LS model, where under the physical measure tts¢dok price (due to the heavy
tails of the distribution of the underlying uncertainty)hébsits infinite variance, we showed

that the fractional strategies considerably reduce thesxe of the P&L to large shocks. For

example, the results from Delta- and Gamma-hedging resulte&L values ranging between
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[—101 630 whereas the results in the same simulation when fracticeddiing strategies are

applied ranged betweén 5, 7].
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Appendix A. Leévy process

Proposition 4 Lévy-Khintchine representationlLet X be a Levy process. Then the natural logarithm

of the characteristic function can be written as
- , 1 - )
INE[E®] — mﬁ-d%?+¢/ (€%~ 118 1 ) W(dX), (A1)
2 R\{0}
where ce R, d > 0, & € C, | is the indicator function and the@vy measure W must satisfy

Ammuxﬁwmm<m. (A2)

A Lévy process can be seen as a combination of a drift commpaddrownian motion (Gaussian)
component and a jump component. These three componentgtarenthed by the Lévy-Khintchine
triplet (c,d?,W). The parametec parametrises the ‘trend’ component which is responsibiettfe
development of the proce®s on the average. The parametrdefines the variance of the continuous
Gaussian component &f. The Lévy measuré/ is responsible for the behaviour of the jump compo-
nent ofX; and determines the frequency and magnitude of jumps. Fiifalhe Lévy measure is of the
form W(dx) = w(x)dx, we callw(x) the Lévy density, which measures the arrival rate of thepsiof
the underlying procese We note that in (A1) above we can have different centerimgtions; that
is, instead of having the terigxl |, .1, we may have other functional forms that guarantee intélgsab
around zero. For example we could simply choose to awéie without the indicator function) and
the difference in the Lévy-Khintchine representationlw# in the drift component. Moreover, for
some types of processes, like the CGMY, it is sufficient taeh#¥ (eiEX - 1) W(dx) for the jump part

of the process, see Carr, Geman, Madan, and Yor (2002).

Appendix B. Fractional Derivatives

In this section we depict fractional derivatives for Eurapeall options using different assumptions

for the stochastic process followed by the underlying sec&.
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FMLS Fractional Derivative, a=1.5, K=100, T=10 days
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Figure 10. Fractional Derivative for FMLS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=17y= 15 andy= 1.3 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the-ngkitral mea-
sure, an FMLS process with= 0.2, a = 1.5 and driftp= 0.05.

FMLS Fractional Derivative, a=1.5, K=100, T=5 days
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Figure 11. Fractional Derivative for FMLS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=17y= 15 andy = 1.3 for a European call witlg = 100,

K =100 andT = 5 days to expiry when the underlying follows, under the mgktral mea-
sure, an FMLS process with= 0.2, a = 1.5 and driftp= 0.05
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LS Fractional Derivative, K=100, T=10 days
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Figure 12. Fractional Derivative for LS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the-ngkitral mea-
sure, an LS process with=0.2,a = 1.7, 3 = —0.5 and drifty = 0.05.

LS Fractional Derivative, K=100, T=5 days
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Figure 13. Fractional Derivative for LS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K =100 andT = 5 days to expiry when the underlying follows, under the mgutral mea-
sure, an LS process with=0.2,a = 1.7, 3 = —0.5 and driftu= 0.05
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Classical Black—Scholes Fractional Derivative, K=100, T=10 days
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Figure 14. Fractional Derivative for Classical Black-Schtes. The figure shows fractional
derivativesoD\§V(St; K,T) withy=2y=18y= 1.6 andy = 1.4 for a European call with
S = 100,K =100 andT = 10 days to expiry when the underlying follows, under the-risk
neutral measure, a geometric Brownian motion with votgtdi = 0.2, and driftu = 0.05.

Classical Black—Scholes Fractional Derivative, K=100, T=5 days
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Figure 15. Fractional Derivative for Classical Black-Schtes. The figure shows fractional
derivativesoD\§V(St; K,T) withy=2y= 1.8 y= 1.6 andy = 1.4 for a European call with
$H =100,K =100 andT =5 days to expiry when the underlying follows, under the risk-
neutral measure, a geometric Brownian motion with voltgtdi = 0.2, and driftu = 0.05.
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Figure 16.

MJD Fractional Derivative, K=100, T=10 days
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Fractional Derivative for MJD. The figure shows fractional derivatives

oD‘éV(S,t; K,T) withy=2y=18y= 1.6 andy = 1.4 for a European call witlg = 100,
K = 100 andT = 10 days to expiry when the underlying follows, under the-ngkitral mea-
sure, a MJD process with= 0.2,A =5, 03 = 0.2 andpy = 0.
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Figure 17.

MJID Fractional Derivative, K=100, T=5 days
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Fractional Derivative for MJD. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the-ngkitral mea-
sure, a MJD process with= 0.2, A = 5,03 = 0.2 andy; = 0.
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Appendix C. Calculation of fractional derivatives in the cam-

plex plane

In the fractional Taylor's expansion we use derivativesheffiorm

1 dn S
oDYV(St) = r

rn—y) ds /o (S—y)" W (y,t)dy.

We calculate these derivatives by numerically invertirgjrtRourier transforms; these are given in

the following proposition.

Proposition 5 Letl <y < 2. Then

SV _av(sy, } M(—ig—1+y),

7OV =7 { 5 e o VeI

Proof: First we use integration by parts to write

1 dv(St) /S(S_ y)lfvdzv(yat) dy.

OV =T a5 S0 Tz v b T

Now let us focus on the second term on the right-hand sidesoétjuation above substituge= uS

to obtain

1 /S(s— )1_yd2v(y,t)d - /1(l_u)1_yd2V(uS,t)du (C3)
0 0

r2—y). a2 Y T Toy. 1T

Now let’s take the Fourier transform with respect to the lsjmice S= €*.

v 1 2 1t L o
f{m/o (-w? VWV(”St)dU} = ooy 0 ey (Ve fau
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7 {e(Z*V)XV(ue‘,t)} — / &2y (g1 t)dx, now letm=x+Inu
_ /°° QlIEF2-)(m-Inu)y (@M )m
_ o (ig2-y)ny / " dEIYImy (@ tydm

= e (E2VI(E—i2—y),1).

Combining the results together we obtain

2 2 2 . n
f{wszi—yy)./ol<l‘“>l‘yd Vd(llft)du} - I'(Tl—y)./ol(l—U)l_y;—uze_('@rz_y)muv(i—i(Z—V)J)dU
_ /1(1—u)1vd—2u<i€+2V>\7(a—i(2—y) t)du
r2-vyJo duw? ’
_ (IE—FZF(VZ)QEV;—?)—V) /Ol(l—u)lyu(i““y)\A/(E—i(Z—y),t)du
_ <i5+2;(yz>f5y )+3‘V)\7<z—i<z—v>,t> [ "1 uy ey
- “E+2;(V2)S+3_y)\7<z—i<2—v>,t>B<—iE—3+v,2—v>
_ (iE+2-y)(iE4+3-y)M(-iE=3+Y)(2-Y) . .
- F2—y) e U S
— (423 Y S DI E i)
o M(—iE—2+Y)e . .
= —('E.+2—V)mv(5—'(2—y)7t)
- e,
where Bw,z) =T (w)I'(2)/T (z+ w) is the Beta function and we have ude@+ 1) = 2 (2).
|

Note that fory = 2 we obtain((i€)2 +i&)V (,t), which is the Fourier transform &VsgSit).
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Appendix D. Other propositions and proofs

Proof of Proposition 2

The value of the option satisfies
V(th) = eir(Tit)Et[rI (XT>T)]'
Now assume that the paydff(xr, T) has a complex Fourier transform (CFT), denoted by a circunfle

~ c+ig
Mo D) =AET) = [ e, Thax

in the stripa < &; < b, where we denot& = Im . Then we can write

—r(T-t) o+,
Vixt) = St [ e mEAE T (04)

Now taking the expectation operator inside the integrad,Lsawis (2001), we obtain

e F(T-1) oot _ixr &1
V(xt) = 21 /_oo+iE‘Et[e e T
—r(T—t o :
e / T T o TOYDF (£ T, (bS)
2 J—coti

wheree*® is the characteristic function af § dLs. Note that we require*(~% to be analytic in a

strip that intersects the strip where the CFT of the payd#tex

It is straightforward to see that (D5) can be written as

oti& . (Tt otE i
i/ e e"EX‘\A/(E,t)dE _ € A )/ i e-'EXt—|E|J(T—t)e(T—t)qJ(—E)ﬁ(E’T)da’ (D6)
210 —coti; 21 J—ootig;

and, by applying the Fourier transfors to both sides of equation (D6), we obtain

VED) = e T-0gtuT-0gT-0%-0fE T).
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Reordering terms, and taking the principal value of the fibtigian function, yields
In (V(&t)/A(E,T)) = —r(T —t) —igu(T —t) + (T ~t)¥(-3). (D7)

Now, differentiating with respect to time(dt), we note that (D7) is the solution of the ordinary
differential equation (ODE)

V(1)

s = M- WV E D

with boundary conditiotV (£, T) = M(E,T).

Moreover, note that we can use this ODE to find the integrieidihtial equation satisfied by the
value of options written on a stock that follows a geometigey.process. For simplicity let us assume
that the Lévy triplet i0,0,W), ie that it has no location and no Gaussian component. Theenekt

step is to apply the inverse Fourier transform? to the ODE above. Thus

av((;tgt) _ %T/‘::Ze—iExt[H_iEu_qJ(_E)]V(E,t)dE
= T e gV e [ e g(E o
0+i§;

21 —wotig

oV (x,t
= rV(th)_p- a(X )

o e [ (e iy Wy (€0

—oo+i§;
oV (x,t)
0X
co+i; . ~
/ /‘ + —IEXt I igyl WKl)v(.‘g,t)dEW(dy) (D8)

o-+i&
oV (x,t)
0X

—/_Z <V(x+y,t) _V(xt) —ywl y|<1> W(dy).

Note that by applying Fubini’s theorem we can interchangeattiler of integration to obtain (D8).

= v (Xat) —H

= v (th) —H
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Proof of Proposition 3

McCulloch (2003) showed that the corresponding risk-raytrocess is given by
d(Ing) = (r — Ba®seda/2)) dt+ odi S+ odiPt (D9)

wheredi S anddi Pt are independent and are the increments of a maximally vetyaskewed LS

process and the increment of a maximally positively skewkghdcess, ie.
o5~ S(K2,—1,00) and  olPt ~ DLg(k1,1,0,0,1) (D10)

with k1 andk; as in (23).
In this case the ODE (21) becomes

NVED _ [r+i& (r — Bo” sedam/2)) — Wis(—&) — WoL(—E)V(E,1), (D11)

where

Wi s(—&) = kg secar/2)(—i§)"

and

Wp (—&) =k sedam/2) (1— (1+i§)?).

Taking the inverse Fourier transform of (D11) delivers thgult.

The KoBoL or DL FBS equation

To obtain the DL or KoBoL FBS equation we assume that themesbhtral log-stock price dynamics

follow a DL process

dx = (r — wg)dt+dLY, (D12)
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where
g = K¢ { p(A — 1) + g(A + )% —A* —ar®"Y(q—p)},

¥ = In§ andr is the risk-free rate. Then, proceeding as above, the vdlagcairopean-style option

with final payoff[1(x, T) satisfies the following FBS equation

oV (x,t _ oV (x,t
rrexVey = Y0y —poiqpy) MU
+Ka{p@x,mDSEJ“VOgU—%qé“xngé“V(xtﬂ. (D13)

Note that if we leth = 2, p=g=1/2 andA = 0 we obtain the Black-Scholes PDE.

Proposition 6 Letd be a uniform random variable ofr-11/2,11/2) and lete be exponential with mean

1. Assumé andeg are independent. Then

_ sinad (cos((l_q)5)>(1—a>/a
~ (cos®)L/a £
is $(1,0,0).

For a proof see Samorodnitsky and Taqqu (1994).
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Notes

INote that a sufficient condition for the integrals (1) andt(®yonverge is that

f(x)=0O(]x|7Y®) fore>0 asx— .

2By large we mean that the movements of the underlying are faugbr than those pre-

dicted by Gaussian shocks.
3Note that the condition on the valuefis given by (A2).

41t is interesting to note that the Lévy density of the CGM¥ahe DL process is essen-
tially the same as that of the LS process except that the expiah damping factor ensures
exponential, instead of polynomial, decay at infinity. Weaapoint out that in the DL case
for ‘short-time’ scales, depending on the magnitude of thepling factor\, the distribution
of the DL can be seen as a very good approximation to the lolisiton of the LS, see Matacz

(2000).

51f we assume that under the physical measure the log-stac fmlows a CGMY, DL,
KoBoL or FMLS process, then the Esscher transformed prosisagain be a Lévy process

where the corresponding pricing equation can be expressadrBS equation.

5We note that we do not enquire about the performance of thgehethenK, < K be-
cause the stock price exhibits very large and frequentigegumps and it is very difficult to
implement a Delta- and Gamma-neutral strategy. If simoietivere performed, then for a
considerable amount of runs, the gamma/g(fS t; Kz, T2) would approach zero much faster
than that ofV4(St; Ky, T1), therefore, in these cases, the hedging strategy wouldrecex-
tremely large amounts, given by

_ 0%V4(St) /0%
"8 vy (s )08
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of Vo(S;t; Ky, T2) to be purchased.
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