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Abstract

Waiting time targets have been a key policy intervention in many OECD countries,

aimed at reducing persistent waiting times for healthcare. What is the impact of targets

on the distribution of patients’ waiting time? Do they affect healthcare outcomes? We

address the first question by developing a theoretical model of healthcare provision and

empirically assessing the entire distribution of patients’ durations at the hospital level.

Our model and empirical evidence identify two distinct admission patterns. Hospitals

respond by either treating all patients faster or by ‘substituting’ among short and long

waiters, indicating an asymmetric effect across patients. In order to address the impact

of targets on healthcare outcomes (mortality, prolonged healthcare, delayed discharge at

the patient level) we explore the identified heterogeneity of responses across hospitals.

We find supportive evidence of a systematic difference in outcomes of patients treated

in hospitals that exhibit asymmetric responses to targets.
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Introduction

Large waiting lists and long waiting times for elective surgery have been at the core of

policy concerns in many OECD countries. Within national health systems waiting lists

function as non-price rationing and signaling devices that reconcile demand and supply,

when healthcare provision is free and supply is constrained. Given the vital importance

of providing good quality and prompt national healthcare, policy makers have extensively

focused on waiting lists and times within a broader set of performance indicators. In many

cases one of the main direct policies to tackle long waits has been the adoption of universal

maximum waiting time targets and provision of direct financial incentives to reduce waiting

times. Despite reports of reduced excessive and average waiting times, the ways by which

hospitals manage their waiting lists and meet (or not) the corresponding targets have been

less rigourously analysed.

This paper explores a more detailed representation of waiting lists to analyse the impact

of waiting targets across different patients and to investigate whether healthcare outcomes

are affected after their introduction. By analysing the different representations of the entire

distribution of patients’ waiting times our theoretical and empirical models provide unique

insights on how hospital’s admission patterns are affected by the implementation of targets.

We identify heterogeneous effects of waiting time targets across different patients at the

hospital level. We then explore those differences to measure the impact of targets on patients

healthcare outcomes.

Our starting point is the development of a theoretical model that conceptualises the main

characteristics of hospitals and allows us to determine the patterns by which elective patients

are provided treatment. The core output of the model is a treatment plan that generates

a distribution of waiting times across patients. Governments, concerned with excessive

waiting times and the volume of treatment intervene by introducing maximum waiting times.

We establish two distinct responses in hospitals treatment plans after the implementation of

targets. First, we obtain a symmetric response, whereby all patients are treated faster while

no one waits more than the maximum; government intervention is successful in decreasing

waiting times and increasing societies’ benefits from healthcare provision. Second, however,

an asymmetric response may arise whereby, while excessive waiting times are eradicated,

the waiting list is ‘manipulated’ and the prioritisation of treatment altered. Longer waiters

are brought in before the target’s limit (thus benefiting from the policy) at the expense of

short waiters that now have to wait longer for treatment. The different responses depend

on the structural conditions of the hospital (costs, benefits from treatment), as well as on

the manager’s effort in increasing treatment capacity while keeping hospital inputs (beds,

operating rooms, medical and non-medical personnel) constant.

On the empirical side, we firstly employ the techniques of duration analysis and Hospital

Episode Statistics (HES henceforth) data for the English NHS during 1997-2005 to estimate

the whole waiting time distribution of elective patients at the hospital level. Our empirical

results provide evidence of hospitals’ efforts in reducing waiting lists and catching up with

targets. Waiting time distributions display a typical ‘bunching effect’ whereby patients that
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were treated after the target are re-ordered to the periods preceding the target for almost all

hospitals in our sample. We also confirm the two key patterns identified in our theoretical

model. There are NHS hospitals that manage to bring the whole waiting time distribution

down. However, the most common response to targets (for around 60% of the hospitals in

our sample) involves trade-offs between short and long waits (asymmetric/ ‘shape’ effects

over time). This behaviour gets prominent as the time targets shorten. In this case, we

observe not only a ‘bunching effect’ before the target’s limit but a shift in the distribution

affecting short duration patients. In our second empirical exercise we investigate whether

targets affect healthcare provision. We utilise patient-level data, focusing on mortality,

prolonged healthcare and delayed discharge as measures of healthcare outcomes and explore

the identified heterogeneity of response across hospitals obtained from our duration analysis.

We find supportive evidence of a systematic worsening of outcomes for patients treated in

hospitals that exhibit asymmetric responses to targets compared to patient outcomes in

those hospitals that do not. The odds ratio of suffering an adverse result, understood as the

necessity of prolonged healthcare or death in hospital, in 2005 increased by 1.5 times for

patients treated at hospitals where an asymmetric response across patients was observed

after the introduction of targets, relative to hospitals in which responses were symmetric.

The odds ratio of a delayed discharge (time to discharge is above the mean) increases by

1.25 times.

Related Literature

Although the literature on health care provision and waiting lists and times is vast,

contributions that look at the overall distribution of waiting times are rare, particularly

at the theoretical level. The closest analyses to our model come from Iversen (1993) and

Siciliani (2006) with the later developing a continuous time dynamic framework. Dixon

and Siciliani (2009) describe and map the distribution of patients already treated (HES

data) with the distribution of patients waiting on the list (waiting list returns). However,

while looking at the overall waiting time distributions, these are not derived from a model

of hospital behaviour, but are rather based on ad hoc assumptions about hazard rates

parametrisation. An important and novel aspect of our theoretical work is the emphasis

on waiting time distributions, and the consequent insights we can draw regarding hospitals

admissions patterns after the policy intervention.

On the empirical literature, duration analysis is only used in few studies. MacCormick

and Parry (2003) applied it using data for one tertiary hospital in New Zealand and Levy,

Sobolev, Hayden, Kiely, FitzGerald, and Schechter (2005) while looking at a subset of

hospitals/ operations in Canada. For the UK national waiting targets, Dimakou, Parkin,

Devlin, and Appleby (2009) use HES data for two years and focus at varying aggregation

levels. Our work expands on the latter in several dimensions. By employing this technique

for the UK, using a longer time span, and focusing at the hospital level we identify particular

hospital-level patterns of admissions in response to the introduction of national targets.

Unlike Dimakou et al. (2009) and guided by our theory, we concentrate attention away

from peaks in hazards curves at target limits and towards the shape of survival and hazard

curves at short durations.
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Another empirical analysis that is related to ours is presented in Propper, Sutton, Whit-

nall, and Windmeijer (2010). In a different framework, they also assess the impact of wait-

ing time targets on patients outcomes without however findings systematic effects. They

establish the effects of targets on hospital behaviour by looking at the ‘bunching effect’

(percentage of patients close to breaching the target). However, guided by our theoretical

and duration analysis contributions, we provide for a potentially better measure of hos-

pitals’ response to the policy intervention of targets. Besides the ‘bunching effect’, which

is commonly observed across hospitals, exploring the heterogeneity with respect to short-

waiters sheds more light on the potential effects of the targets policy and gives evidence of

differentiated patients outcomes.

The rest of the paper is organised as follows. In Section 2 we present the methodology

and results of our theoretical investigation of the effects of waiting targets at the hospital

level. Section 3 proceeds in developing the two empirical exercises; by first confirming our

theoretical predictions on hospital admission patterns after the introduction of the policy,

and subsequently using these result to assess the impact of waiting time targets on patients

healthcare outcomes. Section 4 concludes.

2 Theoretical Framework

We develop a framework to characterise hospital/manager’s treatment plans of patients

waiting on a list. Treatment plans describe the volume of patients treated at each period

and the length of time each patient waited before treatment. While providing treatment,

hospitals must allocate ‘inputs’ (beds, operating theaters, medical staff) for each patient,

taking into account the desire to prioritise patients regarding the length of time they waited

on the list, and the overall costs each treatment entails.

Treatment plans are determined by the hospital to maximise the benefits of healthcare

provision. This decision is subject to three constraints. First, hospitals must abide by a

budget constraint. Second, patients treated and changes in waiting lists must be consistent

with the inflow of new patients each period. Finally, treatments supplied at each period

must be consistent with the utilisation of resources and infrastructure of the hospital and its

healthcare provision function, which determines the feasibility constraint of the hospital. We

furthermore assume hospital’s managers can increase the hospital’s capacity of healthcare

provision by exerting effort (organisation, overutilisation of resources) but may pay a utility

cost in doing so.

The hospital’s treatment plans resulting from this optimisation decision are described

by the distribution of patient waiting times. We utilise this framework to study the effects

of waiting time targets introduced by governments on this distribution. Comparing the

benchmark model without the policy intervention and the hospital behaviour under waiting

time targets yields predictions about the changes in distribution of waiting times after the

introduction of targets depending on the implicit costs managers face to improve hospital’s

treatment capacity.

The two main elements of our model are the set of patients that are currently waiting
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to be treated and the hospital that is the healthcare supplier. We explain each element in

more detail next.

2.1 Patients

Patients currently in the waiting list, Lt, are characterised by the time they have been

on the list, or their duration d = 1, 2, ...q. d denotes the period elapsed between joining

the waiting list of a specialist and admittance for surgery at the hospital. The minimum

possible waiting time is one period (d = 1) and the maximum time is bound by q (patients

do not wait indefinitely). At each time t hospitals treat kd,t patients that have been in the

list with duration d. Thus, total patients treated at time t is given by kt =
∑

d kd,t ∈ Lt.
We do not explicitly model the demand for health care, considering a reduced form

relationship where the inflow of patients to the hospital is decreasing in expected duration.

The higher the expected waiting time at the beginning of t is, the lower the demand for

public health care.1 Formally, the inflow of patients in the list, and equivalently, the demand

for elective health care at the beginning of time t is given by

xt = Z − θEt−1(d)

where Et−1(d) denotes the duration patients, entering in the list at time t, expect at time

t − 1 (defined below), and Z is the potential demand for health care, being a function of

a vector of exogenous demand factors. These may include socio-economic conditions and

morbidity rates. Finally, the sensitivity of demand for healthcare to expected duration is

captured by θ.

Before we describe the hospital’s main features we briefly present the theoretical repre-

sentations of the waiting time distribution. In our theoretical model waiting time is modeled

as a discrete variable, where a period of time is equivalent to a month. The probability

function (PF) of waiting time depicts the whole spectrum of the relative frequencies of pa-

tients having waited distinct periods of time until treatment at t, f(d) = P (D = d). The

cumulative function (CF) corresponds to the probability of having waited d periods or less,

F (d) = P (D ≤ d). From here we obtain the two main representations of waiting time

distributions used in our study, namely the survival and hazard functions. The survival

function shows the probability of a person remaining (surviving) on the list beyond a given

time and is indicative of cumulative rates of treatment. We derive the survival function

as the complement of the cumulative function, that is S(d) = 1 − CF = P (D > d). The

hazard function is the risk of ‘failure’ at some time t. Essentially, it shows the rate at which

patients leave the waiting list at a given time, conditional on having waited in the list up

to that point. It thus approximates the conditional instantaneous probability of admission,

1This reduced form can be obtained by assuming that individuals’ benefits from healthcare decrease while
waiting for treatment and that they have a costly alternative (private providers) available, which is standard
in the literature of waiting times. Expected waiting time acts as a rationing devise equilibrating demand
and supply, similar to what prices do. See for instance Cullis, Jones, and Propper (2000), Goddard, Malek,
and Tavakoli (1995), Iversen (1997), Besley, Hall, and Preston (1999), Martin and Smith (1999), Gravelle,
Dusheiko, and Sutton (2002), Siciliani and Hurst (2005) and Siciliani (2006). Note that extensive expected
waiting times can also reduce demand of elective surgeries by discouraging GPs from making referrals.
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rather than the unconditional one (PF). Thus, h(d) = P (D = d|D ≥ d). Table 1 shows the

different formats of the waiting time distribution.

Table 1: Theoretical Waiting Time Distribution

d f(d) F (d) Survival Function Hazard Function
P (D = d) P (D ≤ d) P (D > d) P (D = d|D ≥ d)

0 0 0 1 0

1
k1,t
kt

k1,t
kt

1− k1,t
kt

=
∑q

d=2 kd,t
kt

k1,t
kt

2
k2,t
kt

k1,t+k2,t
kt

1− k1,t+k2,t
kt

=
∑q

d=3 kd,t
kt

k2,s,t∑q
d=2 kd,s,t

· · · · ·
· · · · ·

q − 1
kq−1,t

kt

∑q−1
d=1 kd,t
kt

kq,t
kt

k(q−1),t

k(q−1),t+kq,t

q
kq,t
kt

1 0 1

The expected waiting time at time t under rational expectations is given by

EREt−1(d) = Et−1

(
q∑

d=1

d
kd,t+d−1
xt

)
= Et−1

(
1× k1,t

xt
+ 2× k2,t+1

xt
+ ...+ q ×

kq,t+(q−1)

xt

)
.

2.2 Hospital

The three key features of the hospital in our model are the benefits of providing treatment

(utility), its operational costs and its capacity (feasibility) constraint given resources and

infrastructure.

2.2.1 Treatment capacity of the hospital

Each patient of duration d is treated utilising beds/operating theaters – hours2 and hospital

resources, which might simply be the amount of doctors/nurses (in hours worked), but could

also include diagnostic tests being run using other hospital infrastructure. The hospital’s

treatment (‘production’) function is given by

f(bd,t, rd,t) = kd,t = χd(δt)b
α
d,tr

β
d,t (1)

where bd,t are the beds allocated to the treatment of duration d patients, rd,t are the resources

allocated to the treatment of duration d patients, and α, β > 0. Finally, χd determines the

amount of patients treated of each duration for a given combination of beds and resources

and δt the effort hospitals/managers make to increase treatment capacity. We assume

Assumption 1. ∂χd
∂d > 0, ∂2χd

∂d2
< 0 and ∂χd

∂δ > 0.

2Given that each period consists of a month in our model, we interpret the amount of beds as the
days/hours that a bed is occupied while patients of duration d are being treated.

6



Thus, treating a patient quicker requires more hours of beds and resources, since doctors

might have to wait for diagnostic results and patients might have to wait for a time slot

in operation theaters. Equivalently, with the same hours of beds/theaters and resources,

a smaller number of patients can be treated with low duration.3 However, the longer the

duration, the lower the gain in decreased resource utilisation per treatment is, by further

increasing the patient’s wait. Finally, more manager’s effort implies more treatment holding

(hours of) beds and resources constant. In other words, more effort from the manager can

lead to methods innovation, better organisation and more efficient allocation of given beds

and resources, increasing treatment capacity. We define Bt =
∑

d bd,t as the total amount

of bed-hours and Rt =
∑

d rd,t as the total amount of resources utilised by the hospital in

period t.

2.2.2 The utility of the hospital

The hospital’s utility from healthcare provision, or benefits from treatment, at any point in

time t is given by

Ut = g(kt) =
∑
d

g(kd,t)− cδδt. (2)

The first term denotes the utility the hospital derives from treating patients at different

durations. g(kd,t) denotes the hospital’s (monetary or non-monetary) gain from treating k

patients of duration d. Recall that here the waiting time (d) is not a choice variable, but it

is endogenously determined. The hospital chooses optimally the number of patients of each

duration to be treated at time t, and this choice determines the waiting time implicitly. We

make two general assumptions on the hospital’s utility.

Assumption 2. For a given number of patients treated (i.e. fixed k), the higher the waiting

time, the lower the hospital’s utility. That is,

∂g(kd,t)

∂d
< 0 or g(kd1,t) > g(kd2,t) for d2 > d1.

The hospital prefers to treat as many people as possible sooner rather than later. Priori-

tisation by waiting times is equivalent to the assumption commonly done in the literature

(see for instance Iversen (1993) and Siciliani (2006)) that the more a patient waits the lower

are his/her benefits from treatment and thus the lower the hospital’s utility.

Assumption 3. For the same d, g(kd,t) is concave in kd,t ∈ [0, k] and exhibits a turning

point.

Hospital’s utility is increasing in the number of treatments until a threshold point. From

that level of activity and onwards, utility declines as more patients (of the same d profile)

3The first statement in assumption 1 implies that it is hard for the hospital to treat patients quickly or
equivalently some waiting allows the hospital to reduce costs of providing treatment, using resources more
efficiently. Although this negative relationship is well established in the literature, both theoretically (Iversen
(1993)) and empirically (Siciliani, Stanciole, and Jacobs (2009)), these contributions also suggest that there
might be a level of duration beyond which beds/resources usage increases (due to higher administrative and
medical resources required to manage a long waiting list). We assume that increased costs (in terms of
resources/beds) due to long waits do not occur before q.
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are treated. This assumption implicitly recognises that spreading treatment across different

durations allows for a better management of capacity and resource utilitsation, increasing

the hospital’s gains from treatment (see also Iversen (1993)). Siciliani (2006) makes a similar

assumption for average waiting time, while here we focus on the duration of each treatment.

The second term in the hospital utility denotes the manager’s disutility of effort in

increasing treatment capacity. cδ > 0 controls the relative weight of this utility loss, which

might reflect manager’s personal costs to ensure full maximisation of resources or losses

derived from overutilisation of personnel. Note that cδ may not merely reflect managerial

ability, but could more likely be the result of current hospital conditions, which are related

to the size of x-inefficiencies. This term introduces a wedge between society’s benefits of

healthcare (
∑

d g(kd,t)) and the hospitals’ total utility of providing treatment.

2.2.3 The cost of the hospital

The hospital is, by construction, capacity constrained, and hence not able to treat all

patients that require treatment at time t. Its cost from providing health care can be de-

composed into four separable parts

Ct = cBB̄ + cRRt + τ(Rt − R̄)2 + wt(kd,s; d̂). (3)

where cB,cR, τ > 0. The first part denotes the cost of maintaining the total amount

of bed-hours B̄ available for each period t. The second and third relate to the costs of

resources. cR denotes the cost of utilising resources
∑

d rd,t = Rt, while τ controls the

additional costs of utilizing resources above an overall hospital resource availability, given

by R̄.4 Finally, the last term in equation (3), wt(kd,s; d̂), represents the waiting time target

policy intervention, defined as

wt(kd,s; d̂) =

{
0 if d ≤ d̂
φkd,s if d > d̂.

d̂ is the universal waiting time target the government sets such that ‘no elective patient

should wait more than d̂ periods since added to the list’. φ is a scale parameter that ensures

penalties from breaching the target are significant to alter hospitals management practices.

This characterisation matches the unconditional maximum waiting time guarantee intro-

duced by the NHS Plan in 2000, together with the penalties and rewards structure that

accompanied it.5

2.3 Hospital’s maximisation problem

In order to facilitate notation of the hospital’s problem, we first describe the list of patients

waiting to be treated. Let the number of patients of duration d > 1 currently waiting for

treatment at time t be Ψd,t−1. This stock is equal to the inflow of patients in time t− d+ 1

4Rt might be greater than R̄, for instance, when hospitals require doctors/nurses to work over-time.
5Note that although we introduce targets as costs, we could equivalently set them as financial incentives

for waiting time reduction (as it was in fact implemented in some OECD countries). Given that in both
designs the hospital budget constraint is altered due to the policy, they generate similar implications to the
optimal waiting list distribution.
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minus all patients treated during periods t− d+ 1 until t− 1. Formally, we define6

Ψd,t−1 = xt−d+1 −
d−1∑
j=1

kd−j,t−j .

The hospital maximises its utility function, selecting δt and {kd,t, bd,t, rd,t}, for all d at

time t subject to its constraints, thus

max
δt,{kd,t,bd,t,rd,t}d

E0

∞∑
t=0

q∑
d=1

g(kd,t)− cδδt

Subject to (C1) cBB̄ + cR
∑
d

rd,t + τ

(∑
d

rd,t − R̄

)2

+ wt(kd; d̂) ≤Mt

(C2)
∑
d

bd,t ≤ B̄

(C3) kd,t = χd(δt)b
α
d,tr

β
d,t

(C4) xt = Z − θEt−1(d)

(C5) 0 ≤ kd,t ≤ Ψd,t−1, (C6) Ψd,t = 0 for d > q

With respect to the cost of health care provision, we assume that the hospital has a bud-

get allocated for elective surgeries given by Mt, and the first constraint corresponds to the

budget constraint of the hospital. Here and unlike in Ellis and McGuire (1986) the budget

allocated to the hospital is exogenously given and thus our basic set-up (without government

targets) is closely linked to the non-cooperative game of Iversen (1993). The second con-

straint, (C2), ensures beds allocated are within hospital’s infrastructure limit. (C3) states

the treatment function. The forth constraint ensures the hospital takes the evolution of

patients inflow into account. The fifth constraint states that the amount of patients of du-

ration d treated at time t (kd,t) must be between zero and the number of untreated patients

in the list for that duration. In other words, the number of people selected for treatment at

time t cannot exceed the corresponding number of people waiting. Lastly, using (C6), we

impose that the maximum waiting time is q. We solve this problem assuming a steady state

has been reached (see Appendix A for details) and thus the number of entries to the list is

equal to the number of patients treated at any point in time (xt = kt) and the optimal kd,t
are time-invariant. At the steady state the expected waiting time becomes

Et−1(d) = d̄ =

q∑
d=1

d f(d) =

q∑
d=1

d
kd
k

= 1× k1
k

+ 2× k2
k

+ ...+ q × kq
k
.

2.4 Waiting Time Distribution and the Effects of Waiting Targets

The main output of our framework is the hospital’s waiting time distribution. We con-

centrate on two key representations of that distribution, the survival curve and the hazard

curve, as described in Table 1. In order to explore the mechanism and highlight our main

6The total list of patients at time t is given by the current inflow of new patients plus all untreated
patients from previous periods, Lt = xt + Ψ2,t−1 + Ψ3,t−1 + Ψ4,t−1 + ... + Ψq,t−1 = xt +

∑q
d=2 Ψd,t−1 and

letting the inflow of patients at t xt = Ψ1,t−1, we can write Lt =
∑q

d=1 Ψd,t−1.
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results we solve the model numerically and thus have to select functional forms for the

utility g(kd,t) and χd(δt), and the main parameters of the model.7 Functional forms are

selected such that assumptions 1-3 are met, and details are presented in Appendix B. For

simplicity we set q = 24, as the maximum duration possible being 24 months. In Dimakou

et al. (2014) we explore how a similar model accounts for different hospital management

practices and waiting time distributions when various functional forms and parameters are

selected. The model there also allows for prioritisation by patient’s level of severity. Here

our focus is on analysing the effects of waiting time targets and thus we work with a bench-

mark specification that provides the best general fit for waiting time distributions prior

to the government policy introduction.8 The main theoretical implications stressed below,

which we test in our empirical exercise, are generally robust to parameter changes.

In order to understand the effects of waiting targets we solve two versions of our model,

(i) the benchmark model setting d̂ = 24, thus in this version there is no government inter-

vention (no target imposed), and (ii) the target model in which we set d̂ = 10 < d∗, where

d∗ is the maximum duration observed in the benchmark model, thus the target binds. We

perform this pre- and post- target analysis for two parameter specifications, one where cδ

is relatively small, thus managers may increase resource utilisation at lower utility cost,

and one where cδ is relatively high, thus it is very costly for managers to increase capacity,

holding beds and resources constant. Recall that the size of this parameter does not solely

reflect managerial ability; a high value of cδ could be the result of the hospital already

operating with a fully efficient allocation of beds and resources.

Figure 1 shows the graphical representations of the survival functions (upper graph)

and the hazard functions (lower graph) for the benchmark and target versions of the model

when costs of improving treatment capacity are low. The survival curves start from one,

as all patients are waiting to be treated at duration zero, and then decrease monotonically

while the hospital removes patients off the list. The hazard curves increase and reach one

when all patients are treated.

Before we focus on the effects of targets on treatment plans we provide a general discus-

sion on the main mechanisms that shape survival and hazard curves. The mechanisms that

drive the hospital’s admission behaviour depend mainly on its utility, production structure

and inflow interactions. The hospital would prefer to treat as many patients as possible im-

mediately (‘front-loading’), increasing benefits. However this comes at a higher cost, since

it forces the hospital to allocate more bed-hours and resources for each patient. Moreover,

hospitals refrain from treating too many patients up front since that would reduce expected

waiting time, increasing the demand for health care in the future and generating longer

waiting lists as hospitals are capacity constrained. Therefore, the hospital also takes into

account the impact of its own behaviour in the future flow of patients. Finally, due to

congestion (assumption 3) benefits also decrease when the number of treated patients of

7We obtain the solution by employing a constrained nonlinear optimisation routine in Matlab. Although
it is fairly easy to determine the first and second order conditions of our maximisation problem, these involve
many Kuhn-Tucker equations. Thus, it is easier to solve the optimisation problem directly instead of using
the resulting system of equations.

8Differentiating patients by the severity of their case would not change qualitatively our results. However,
we only consider prioritisation by duration here.
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the same duration are too high, given incentive for hospitals to smooth treatment across

duration.9 As a result, hospitals treat most patients that are in the list for the first 3

months, and continue treating patients such that hazard rates are monotonically increasing

for longer durations.
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Figure 1: Effect of Waiting Targets - Low Costs (cδ) - Case 1

As the survival curves (Figure 1) demonstrate the introduction of waiting time targets

are successful in ensuring that no patient waits more than 10 months (d̂ = 10) and moreover,

the probability of being treated at any duration conditional on still being in the list (hazard

curve) also increase across all durations. The survival curve shifts leftwards, closer to the

origin and the hazard curve shifts upwards, while becoming steeper. The introduction of the

waiting time target not only benefits long waiters (i.e. patients that in the pre-target case

were waiting for 10 to 14 months), since those now wait less for treatment but also shorter

waiters, since now they are more likely to wait less. This symmetric improvement across all

patients is possible since managers find it optimal to improve treatment capacity holding.

With a re-organisation of beds/resources or through methods innovation, they manage to

continue treating as many patients of low duration as possible - costs of investing in δ are

9This feature essentially prevents the hospital from treating the maximum amount of patients possible in
the first period and leaving the remaining patients to be treat at the limit of 24 months duration to ensure
expected duration is not too low - an extreme case of front loading.
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small relative to the incentive to front-load. Finally, having assumed that government’s sole

care is about the benefits of treatment (
∑q

d=1 g(kd)) and not managerial costs of improving

capacity (cδδ), the introduction of targets also leads to higher benefits from healthcare

provision.
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Figure 2: Effect of Waiting Targets - High Costs (cδ) - Case 2

Figure 2 shows the graphical representations of the survival functions (upper graph)

and the hazard functions (lower graph) for the benchmark and target versions of the model

when costs of improving treatment capacity (cδ) are high. Again, the waiting target is met,

as no patient is treated with duration greater than d̂ = 10 but in this case the hospital

manages to eliminate the long waiters (i.e. patients previously treated after the set target)

by reducing the amount of very short waiters and at the same time increasing the amount

of medium waiters (increased treatments in the periods prior to the target). This shift in

treatment plans can be identified in two equivalent ways. First, while the hazard curve,

again, becomes steeper (the probability of being treated before the target increases in both

Case 1 and Case 2 ), it now decreases for short durations; patients are less likely to be

treated during the first four period of wait. Second, or equivalently, patients are more

likely to survive in the list for longer since few are treated up front. Thus, the survival

curve pivots up for short duration. In order to ensure all patients are treated before the

target, the probability of treatment of middle duration patients (5 till 10) must increase.
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Therefore, the model identifies an asymmetric effect of the targets on long and short waiters

resulting from a ‘manipulation’ of waiting list that alters the prioritisation of treatment.

The introduction of targets does not induce managers to improve treatment capacity, since

the ‘front loading’ motive is weak relative to the disutility of ensuring a re-organisation of

inputs that would yield more treatments, holding beds and resources constant. As a result

this ‘manipulation’ of the waiting time distribution is necessary in order to reduce costs

and keep the steady state expected duration and overall number of treatments controlled.

Finally, we observe that due to the lack of improvement in capacity, the total benefit from

treatment (
∑q

d=1 g(kd)) is reduced. Thus, in this case while the policy intervention managed

to ensure no patient waits too long to be treated, it did not increase the total benefits of

healthcare provision after the introduction of targets.

3 Empirical Analysis

Based on our theoretical model, the introduction of waiting targets is effective in eliminating

long-waiters but can generate a positive and symmetric effect across patients (all patients

are treated relatively more quickly than before) or it can generate an asymmetric effect

across patients, with long-waiters benefiting in detriment of short-waiters. The first aim of

our empirical analysis is to explore whether these two responses, identified theoretically, are

observed when waiting time targets are introduced. The second aim is to investigate whether

this asymmetric response, when occurring, affects patients healthcare outcomes. Before

detailing the empirical methodology used for each empirical exercise we briefly describe our

dataset.

The HES is the database employed. This covers all NHS hospital patients treated in a

given financial year in England and Wales, recording both the date the patient was placed

on the waiting list of a specialist and the treatment date. The difference between the two

serves as the measure of waiting time (or duration). We evaluate data on three specialties

(general surgery, trauma and orthopaedics, and ophthalmology) consisting of more than

50% of patients waiting for elective surgery. The time coverage is nine years from 1997/98

until 2005/06. The majority of procedures are general surgery, followed by orthopaedics

and ophthalmology, and there is a steady increase of admission numbers of all specialities

through the years. After excluding trusts with missing data over the nine years from 1997/98

until 2005/06, a set of 52 hospitals remains.10

3.1 Empirical Waiting Time Distributions

Methodology

10Our sample includes all hospitals, identified by their NHS code in the HES, for which there is available
data for all years. Some NHS code changes might occur due to mergers or other organisational reforms, thus
for some NHS codes we have data for a subset of periods within the 9 years. Although it would be possible
to construct a time series by linking different identifiers that relate to a known hospital, we exclude them
since, depending on the degree of reform, comparisons of waiting distributions might be misleading.
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We employ duration (also known as time-to-event or survival) analysis to obtain em-

pirical representations of patients’ waiting time patterns.11 Duration analysis, by exploring

conditional probabilities of treatment and the cumulative density function, is a robust and

informative approach, allowing for an in-depth exploration and comparison of distinct ad-

mission behaviours. Following our theoretical model closely, we estimate survival and haz-

ard functions using the non-parametric Kaplan-Meier or product limit estimator (Kaplan

and Meier, 1958). Comparisons are then performed using both graphical techniques and

log-rank statistical tests to ensure the survival curves obtained are statistically different.

The key general characteristics of survival curves that guide our analyses, using the

terminology of Weon and Je (2012), are their variation in terms of ‘shape’ and ‘scale’.

Scale refers to changes in the position of the curve. Survival curves closer to the origin

imply faster admission rates, since a smaller proportion of patients is left waiting on the

list at each duration. Scale changes after the introduction of targets are therefore directly

linked to a symmetric response in hospital admission behaviour. Shape refers to changes in

the slope (size and sign of second derivative) of the survival curve. Shape changes after the

introduction of targets are therefore indicative of potential asymmetric effect across patients.

Results

In 2000 the UK government introduced a national NHS inpatient waiting time target

for all public hospitals of 18 months, which was gradually reduced by three months at every

year from 2002 until 2005/2006 (see Table 2 below).12 For most of our empirical analysis

we focus on the effects of the policy on hospitals admission patterns, comparing waiting

time distributions of the period prior to the policy to the ones observed in 2005/06 after all

target changes have been introduced. Nonetheless, we start by presenting the evolution of

admission patterns over the nine years (1997-2005) for Hammersmith hospital as it shares

common characteristics with many of the other trusts.

Table 2: Waiting time targets - timeline

Year
2000/01 2002/03 2003/04 2004/05 2005/06

Targets 18m(546 days) 15m(456 days) 12m(365 days) 9m(273 days) 6m(182 days)

The trends in the survival curves of Hammersmith differ markedly across the nine year

period (Figure 3). Admission rates for the first two years are quite slow, but improve

gradually as time passes; the survival curves shift leftwards for the whole range of durations,

implying a proportional decrease in the waiting time of all patients (scale/symmetric effect).

It is also evident that much effort is devoted to reducing extremely long waiters; while 20%

of patients had to wait more than a year in 1997 and 1998, from 2003 onwards there were no

11In our context, the ‘event’ of interest is admittance to hospital, ‘survival’ corresponds to remaining on
the list, and ‘time’ is that between being placed on a waiting list until admitted for surgery.

12Together with the introduction of targets other policies increasing hospital capacity and promoting
productivity gains were implemented. Nonetheless, our empirical results indicate that targets have been the
key drivers of hospital’s waiting lists management (hazard rates peak at the targets).
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patients with that duration. During the introduction of the laxer targets, the hospital was

able to improve treatment capacity and hence results match the theoretical prediction for

Case 1 (Fig. 3 (a)). However, in the last two years of our sample the Hammersmith hospital

increased the waiting times of people with duration less than 6 months relative to previous

years, particularly so in 2005/06. This is reflected by a rightwards pivot of the first (0-182

days) segment of the survival curve, together with a noticeable change in the curvature

(significant shape effect). In fact, the results indicate that in 2005 the hospital treated

relatively less patients during the first 4 months of wait comparing to years 1997 and 1998,

before the targets were set (Fig. 3 (b)). As a result, facing stricter targets, the hospital is

unable to increase treatment capacity further and hence manipulates the treatment plans,

reducing the number of long-waiters in the detriment of short-waiters as predicted by Case

2 of our theoretical framework.

Figure 3: Evolution of survival curves of Hammersmith from 1997 to 2005.
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Figure 4 reports the evolution of the hazard curves for the same hospital and time frame.

A key difference between the theoretical hazard curves and their empirical counterpart is

that the first always approach one as the list is eliminated, while this is not so for the

second. The empirical curves increase sharply when the list gets substantially reduced but

as a residual amount of patients may remain in the list for substantially long periods, we

observe a fall after the sharp increase instead of a cumulative curve that approaches one.

Nonetheless, as in the theoretical model those peaks indicate the point where survival curves

approach zero. Note that we observe peaks even for the first three years (1997-99), where

no national targets were rigourously imposed. Such a behaviour is consistent with hospitals’

having their own ‘internal’ targets. With the introduction of decreasing national targets

the peaks in the hazard rates move leftwards, broadly in line with these targets. Thus,

it is evident that hospitals are consistently responding to this government policy. From

2000 until 2004 the universal targets have decreased from 18 to 9 months and the peak of

the hazard curve occurred before or at the target in all years. However, in 2005, with the

decrease of the target to six months, the peak occurred after the target, already indicating

the hospital’s difficulty in meeting a stricter target. Once again the estimated changes

in waiting time distribution match well our theoretical predictions. In some cases hazard
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curves move up, targets are effective in eliminating long waiters but have positive effects

across all patients given that hazard rates shift up across all durations. However, for years

2004 and 2005 we observe that while the peak moves leftwards, the lower duration portion

moves downwards, indicating list manipulation and asymmetric effects across patients.

Figure 4: Evolution of hazard curves of Hammersmith from 1997 to 2005.
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To sum up, hazard curves increase around the target duration for each of the years

from 2000 until 2005, reflecting a natural shift of patients that are now treated before the

target and consistent with our model predictions (for both Case 1 and Case 2 ). However

this ‘bunching’ in the distribution of waiting times when a threshold is introduced does

not reflect whether ‘manipulation’ of waiting lists occurs or not. Rather, the indication of

manipulation of waiting lists and suboptimal outcomes, suggesting hospitals alter clinical

priorities due to the policy intervention, is reflected by the effects on the left-hand side of

the distribution. An effective intervention increases the probability of treatment for short

duration patients, while a suboptimal intervention leads to a decrease in the probability of

treatment of short duration patients. We explore this heterogeneity of responses to analyse

the effects of targets on health care outcomes of patients in section 3.2.

A brief look at the overall effect of the waiting targets introduced in the UK (comparing

survival curves from 1997 and 2005) for all hospitals in our sample indicates the consistency

of our findings. Figure 5 illustrate the results for a subset of 9 hospitals while the remaining

43 hospitals, for which comparison is possible, are presented in Appendix C. For 33% of the

hospitals a symmetric effect across patients is observed (positive scale effect with survival

curves shifting down, e.g. Bradford and St. George hospitals), matching Case 1 of our

theoretical framework, while for 58% of the hospitals a trade-off between short and long

waiters emerges; the short-end of survival curves move up indicating short-waiter are worse

off (e.g. Hamstead and Nuffield and South Manchester), in accordance with Case 2 of our

model.13

13Three hospitals in our sample exhibit negative scale effects, whereby all patients are waiting longer after
the introduction of the targets.
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3.2 Impact of waiting time intervention on healthcare outcomes

Methodology

In this section we consider the effect of the introduction of waiting time targets on pa-

tients’ healthcare outcomes. The first step to perform such analysis is to define how to

identify and measure when targets are potentially altering the quality of patient treatment

in a NHS hospital, aside from their role in reducing average waiting times. Our theoretical

and empirical analysis suggests that the impact of targets is efficient and improves benefits

of healthcare when short duration patients are better off, while potential clinical distor-

tions might be present when the treatment of short duration patients is delayed relative to

the pre-target waiting time distribution to accommodate for the faster treatment of long

duration patients. We thus classify hospitals in our sample according to their response in

the treatment of short duration patients. As such we set group 1 hospitals as the ones

that responded to the target in an asymmetric manner (shape effect) and group 2 hospitals

the ones that responded following a symmetric pattern across patients (scale effect). We

then characterise patients according to each hospital they were treated. The benchmark

classification we use is done comparing the waiting time distributions for 1997 (the first

year in our sample) and 2005 (the last change in waiting targets - 6 months). We verify the

robustness of our results by using waiting time distributions for 1999 (the year before the

targets were imposed) and 2004, when targets were set at 9 months.

The second step is to define how to measure healthcare outcomes or the quality of

patient treatment. One possibility is to use measures such the quality-adjusted life-year

(QALY) for each healthcare intervention, however as in many studies that use HES, lack

of QALY data at the patient level prevents us from doing so. The level of detail in our

dataset allow us to construct three distinct measures of outcomes. The first, and generally

accepted measure, is patient mortality rate. Our dataset only includes death in hospital, or

before discharge, while mortality until 30 days after the discharge is also commonly used.14

As a result our first measure is quite restrictive and as such in our second measure we

include both mortality and discharge to a general ward/ another hospital, which we named

prolonged care or mortality. Finally, we select a third measure of health care outcome that

explores the period from admission until discharge, identifying patients with above average

length of stay (delayed discharge).

The third and final step is to define the empirical model. We employ a cross section

logit regression model at the patient level to measure the impact of the targets on a set of

patient outcomes controlling for patient and other hospital characteristics. More precisely

we estimate the following specification

oi = β0 + β1shapei + β2X1i + β3X2h + ui (4)

where i refers to patients and h to hospitals. oi ∈ {mortality, prolonged care or mortality,

14In recent years the HES databased provide the 30 day mortality variable by using death records in the
UK from the Office of National Statistics (ONS). However, ONS data was not available to us for our sample
period.
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delayed dischrage} refers to the measure of healthcare outcomes, shapei takes the value

of one for patients treated in hospitals in group 1 (asymmetric response) and zero for

patients treated in hospitals in group 2 (symmetric response). X1i includes the following

set of patient and episode level controls; age, sex, index of multiple deprivation, main

specialty of episode and number of complications/comorbidities per case, while X2h refers

to hospital level controls, namely type and size of hospital, hospital resources (total number

of employees, beds), total capital investment and total number of complaints regarding

facilities. The analysis is performed at the cross-sectional level with outcome and control

variables evaluated at the year of study (2005). Table 3 describes all variables and sources.

Table 3: Variables in estimation results

Variable Description

Patient outcome variables (source: HES)
mortality 1 if patient died in hospital; 0 otherwise
prolonged care/
mortality

1 if patient was discharged to another hospital facility (general ward) or another
hospital, or if patient died; 0 otherwise

delayed discharge 1 if patient stayed above average from admission for surgery until discharge. Evalu-
ated at speciality level.

prolonged care same as prolonged care/ mortality, but patients that died are excluded (missing val-
ues). Used for robustness

overly delayed
discharge

1 if patient stayed one standard deviation above the average by specialty stay until
discharge. Used for robustness

Main independent variable (source: HES)
shape 1 if hospital responded in an asymmetric way to waiting time targets (shape effect);

0 if scale (hospital reduced waiting times throughout the scale). Comparison made
between: 1997-2005; 1999-2005; 1997-2004; 1999-2004. Cases identified as negative
scale (treating all patients slower) are included in the shape effect.

Patient level control variables (source: HES)
groupage each patient classified in one of 11 ten-year groups
sex 1 if female
imdj index of multiple deprivation: j ∈ {hd, i}, for health and disability and income com-

ponents respectively.
ortho 1 if main specialty of the episode is orthopedics; 0 if ophthalmology or general surgery
ophtha 1 if main specialty of the episode is ophthalmology; 0 otherwise
CCn set of categorical variables showing the number of patient diagnoses (primary and

three secondary) classified under complications and comorbidities in HRGv4. CC 1=
1 if patient has one CC amongst his/her diagnosis; CC 2 =1 if patient has two CCs,
and so on

Hospital level control variables (source: HEFS)
large, medium,
small, teaching,
specialist

a set of categorical variables for large, medium, small acute, teaching and specialist
types of hospitals. Takes value 1 for each type; 0 otherwise

beds available number of beds
totempl total (medical and not) number of employees (in WTE)
totcapinv total capital investment (in £)
complaints total number of complaints about facilities

All data are from HSCIC: HES, hospital episode statistics; HEFS, hospital estates and facilities statistics.
The assignment of CCs to patient episodes in done using the methodology of HRGv4, as outlined in
http://www.hscic.gov.uk/article/2322/HRG4-200708-Reference-Costs-Grouper-Documentation. Hospital
level variables from HEFS are at the trust level, since not available at hospital (site) level.

As discussed in the introduction Propper et al. (2010) also assess the impact of the tar-

gets policy on patients outcomes, employing a different methodology than ours and finding

no systematic differences in outcomes. One fundamental difference stems from the identifica-

19



tion of the targets effect on hospitals (first step discussed above). This is done by employing

census data and looking at the ‘bunching effect’, that is, the percentage of patients at the

end of each quarter that risk breaching the target if not treated in the following quarter.

We, on the other hand, define a measure that focuses on the short-side of the waiting dis-

tribution (of HES data). Our theoretical and duration analysis confirms that ‘bunching’

around the time of the target (humps in hazard curves) is a common phenomenon, hence

what differentiates hospitals’ responses is not whether (previously) long-waiters are treated

at the margin of the target limit, but whether this is done at the expense of short-waiters

that now have to wait longer. Our measure, thus, provides for a potentially better and

simpler identification of hospitals’ heterogeneity affecting patient’s i treatment.15

Results

Results, presented in Table 4, are obtained employing our logit estimation and are de-

picted in odds ratios.16 Our findings provide supportive evidence for a systematic difference

in outcomes among patients treated in hospitals that responded asymmetrically to targets.

For the first outcome measure (column (1)), the impact is insignificant but this can be

largely attributed to the fact that patient mortality in hospital is of extremely low fre-

quency (about 0.12% of patients in 2005 died while in hospital). For the second outcome

measure (column (2)) our findings are stronger. We confirm that for those patients treated

in hospitals with an asymmetric response to targets the odds of dying in hospital or being

discharged to other facility/hospital for continued care are almost 1.5 times more relative

to the odds for patients treated in hospitals that reduced waiting times throughout the

distribution.

The majority of control variables at patient level are also significant. A unit increase

in age group (i.e. a decade increase) more than doubles the odds of the worse outcome

occurring, while health and disability deprivation is also increasing the odds. Being a

female patient also seems to increase the odds of prolonged care, while they decrease for

mortality. The odds of the worse outcome occurring are also increasing in the number of

complications in each episode.17 The type of hospital is also shown to be a significant factor,

with large acute hospitals having higher odds relative to all others. All other characteristics

of hospitals do not seem to be altering the odds on patient outcomes.

The last four columns depict results for the third patient outcome. The odds of staying

15Also note that Propper et al. (2010) use quarterly frequency of a shorter time span (2000/01-2004/05),
employing a panel data analysis and using the ONS-HES linked mortality data. At the hospital level, they
also investigate different types of list manipulation, such as whether the type of admission for elective surgery
has changed (from waiting list to booked or planned, with the later not included in the target policy). Our
focus is only on waiting list admissions.

16Estimated parameters have been adjusted such that a parameter of 1 indicates the variable of interest
does not affect the oddsratio of observing the outcome.

17It could be argued that patients’ episodes with complications could be the outcome of prolonged wait
prior to admission. That is, complications may be the consequence of prolonged waiting times, and this
outcome could be worsened in those hospitals that substitute among long and short waiters. However, results
whereby ‘patient with complications’ is treated as the dependent variable actually show that the odds of
developing complications among the hospitals with scale admissions patterns are higher, thus validating our
choice of using CCs as a control variable.
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Table 4: Estimation Results
(1) (2) (3) (4) (5) (6)

outcome: mortality prolonged care delayed discharge
or mortality

shape 1.036 1.471 1.241 1.452 0.968 1.760
(0.24) (7.36)*** (16.02)*** (16.08)*** (-1.89)* (10.78)***

groupage 2.597 2.120 1.244 1.344 1.494 0.917
(16.72)*** (40.50)*** (71.87)*** (51.09)*** (89.07)*** (-8.59)***

sex (female) 0.638 1.225 1.208 1.408 1.099 1.149
(-3.44)*** (4.39)*** (16.95)*** (17.88)*** (6.16)*** (3.16)***

imd 1.194 1.203 1.184 1.993 0.692 3.294
(2.13)** (6.38)*** (3.12)*** (7.32)*** (-5.00)*** (6.20)***

ortho 0.271 3.417
(-8.41)*** (21.37)***

ophtha — 0.062
(-13.11)***

No. of complications (CCs):
CC1 1.642 1.873 1.493 1.428 2.440

(9.25)*** (51.93)*** (18.31)*** (22.19)*** (17.52)***
CC2 2.755 2.610 2.116 1.790 4.790

(15.22)*** (52.41)*** (26.53)*** (21.25)*** (15.55)***
CC3 5.866 3.809 2.976 2.755 8.366

(19.90)*** (39.50)*** (24.51)*** (16.89)*** (6.50)***
CC4 11.201 5.714 4.204 4.813 —

(16.85)*** (21.95)*** (15.41)*** (9.21)***
medium 0.775 0.619 0.695 0.907 0.601

(-3.42)*** (-20.47)*** (-9.44)*** (-3.00)*** (-4.17)***
small 0.228 0.738 0.788 0.952 1.263

(-12.81)*** (-10.02)*** (-4.59)*** (-1.21) (1.54)
teaching 0.397 0.858 0.790 0.762 0.142

(-9.41)*** (-6.83)*** (-6.86)*** (-8.44)*** (-12.96)***
specialist 0.277 1.230 — 1.241 10.471

(-9.47)*** (4.97)*** (4.26)*** (10.18)***
complaints 0.995 1.000

(-8.71)*** (0.31)
totempl 1.000 0.998 1.000 1.000 1.000 1.000

(0.96) (-9.34)*** (-8.02)*** (-1.27) (2.43)** (5.50)***
totcapinv 1.000 1.000 1.000 1.000 1.000 1.000

(-0.19) (1.72)* (7.55)*** (3.70)*** (3.87)*** (-0.41)

Obs. 165,118 193,442 193,986 67,475 94,081 35,552

Note: t-ratios (based on robust standard errors) in parentheses; * = 10%, ** = 5%, and *** =
1% levels of significance. In column (2) hospital size/resources is measured by number of beds; in
all others by total number of employees. imd is measured by the health and disability domain in
columns (1)-(2) and by the income one in columns (3)-(6). A dash line indicates that the outcome
measure was not identified in a particular category (e.g. no patient died from ophthalmology in col.
(1)

.

in hospital longer than average until discharge are 1.25 times higher for patients treated in

hospitals that exhibit an asymmetric response than patients treated in hospitals with a scale

effect. In the last three columns of the table, we disentangle the effects across the specialties

at which the average stay has been evaluated. Among general surgery, the odds of delayed

discharge are 1.45 times more for patients treated at ‘shape’ hospitals than for those at

‘scale’ hospitals, and they increase to 1.8 for ophthalmology. For orthopedics, the odds

are reversed with prolonged stay somewhat more likely among patients at ‘scale’ hospitals,

although the results are barely significant. As before, the effect of control variables stays

unchanged.

Summarising, our results indicate that patients treated in hospitals in which the in-
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troduction of targets generated ‘manipulation’ of lists to the detriment of short duration

patients are more likely to observe a worse outcome after the policy intervention. This

includes facing a higher mortality rate, and particularly, the likelihood of being in need of

prolonged healthcare after discharge or facing a prolonged stay after admission. We perform

a number of robustness exercises and selected results are depicted in Table 7 in Appendix D.

First, we employ different year comparisons to construct the shapei variable (1999) and a

different year for assessing patient outcomes (2004). Second, we deploy two different proxies

for healthcare outcomes, namely prolonged care (excluding mortality) and delayed stay (for

those that wait much longer until discharge). Findings are qualitatively unchanged.18

The shape variable used in our regressions has been constructed based on the identi-

fication of the heterogenous effects of targets on the empirical waiting time distributions.

However, the differences across hospitals that based our classification, in line with a possi-

ble interpretation of our theoretical model, might be the result of hospital’s management

quality, which are potentially related to quality of healthcare. As such, our classification

identifies the effect of targets at the hospital level but may also be related to the differences

in quality or performance that existed before the introduction of the waiting targets. In or-

der to explore to which extent this is the case we perform a ‘placebo’ (falsification) exercise

whereby we attempt to investigate whether our shape measure would also affect patients’

outcomes for the years prior to 2000. In Table 5 below we show estimation results for the

coefficient and significance of the shape variable (all other control variables, although not

reported, are the same as in Table 4).

Table 5: Results for years prior to the targets
(1) (2) (3) (4) (5) (6)

mortality prolonged care or mortality delayed discharge

1997 1999 1997 1999 1997 1999
shape 0.948 1.189 0.870 0.936 1.145 1.299

(-0.47) (1.48) (-3.39)*** (-1.65)* (11.88)*** (24.61)***

Obs. 234163 268543 234065 268581 233132 267200

For both years prior to the implementation of targets, the impact of being treated in a

hospital that later displayed shape effects plays no role for mortality, while for the second

outcome we find that the odds of prolonged care/ mortality are lower among the patients

in hospitals that later exhibit asymmetric reductions to waiting times. This result indicates

that with the policy intervention these hospitals, due to changes in treatment plans, have

delivered relatively worse outcomes. Finally, for delayed discharge, we see that while in 1997

the effect is significant, albeit lower than in 2005, this is not the case for 1999, suggesting

that, even from before the targets, in hospitals that asymmetric effects of targets were later

observed, patients were more likely to face prolonged stays. However, given that in 1997 this

effect was smaller and that in 1999 some form of anticipation of the introduction of targets

18We also estimate all specifications of Table 4 using robust standard errors clustered at the hospital
level. The shape variable becomes insignificant only for column (2). We found that when specialist hospitals
are included clustering standard errors are significantly higher. As a result we exclude patients from these
hospitals (patients from 41 large, medium, small and teaching hospitals remain in the sample), also dropping
the control for specialty from specification (2), and find that the shape variable is again significant. We
conclude that our main results are also robust to clustering standard errors at the hospital level (results are
available from the authors upon request).
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might have occurred, we cannot rule out that targets might also have affected patient’s

length of stay.

4 Conclusion

Waiting time targets have been widely used to improve the provision of healthcare in several

OECD countries. Many contributions to the literature have analysed the effectiveness of

such policy interventions, particularly looking at their effect on average (and excessive)

waiting times and concluded that targets have been successful in reducing patients waiting

times. Using data from the UK National Health System we also analyse the impact of

waiting targets on healthcare provision, but as opposed to other studies, we focus on the

entire distribution of patients waiting times, being able to identify different effects across

patients.

We show that the great majority of hospitals responded to the targets policy by setting

treatment plans such that no patient is treated after the target’s limit, and thus average

waiting time is reduced. However, this observation does not necessarily indicate that the

policy intervention increased the benefits of healthcare provision. While a proportion of

hospitals alter treatment plans such that all patients are treated fasters and hence healthcare

provision improves, the majority of hospitals manage to eliminate patients with duration

greater than the target limit, by decreasing treatment of patients who have just entered on

the waiting list. As such a subset of patients that were treated quickly before the policy

intervention are now worse off. This is particularly so as the targets tighten.

We then explore this heterogeneity across hospitals to identify whether waiting time

targets have altered a set of outcomes of healthcare interventions. We find that in hospitals

in which targets have produced trade-off across patients, indicating ‘manipulation’ of waiting

lists and potential clinical distortions, quality of healthcare provision become systematically

worse relative to hospitals where the prioritisation of short duration patients has remained

the same. Delayed treatment of short-waiters is associated with increased likelihood of

patient mortality or greater chance of need for prolonged healthcare. It also increases the

probability the the length of stay from admission until discharge gets higher. As a result,

although we find evidence that waiting time targets corrected the problem of large waiting

times in elective surgery in the UK, we also find empirical support for the hypothesis that

targets also generated a negative effect on patient welfare.
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A Steady state hospital’s maximisation problem

Here we show in more detail the steady state hospital’s maximisation problem.

max
δ,{kd,bd,rd}d

E0

q∑
d=1

g(kd)− cδδ

Subject to cBB̄ + cR
∑
d

rd + τ

(∑
d

rd − R̄

)2

+ wt(kd; d̂) ≤M∑
d

bd ≤ B̄, kd = χd(δ)b
α
d r

β
d∑

d

kd = Z − θE(d)

0 ≤ kd ≤ Ψd, Ψd = 0 for d > q

Recall that k =
∑

d kd, the steady state expected duration is defined as E(d) =
∑

d d
kd
k

and Ψd = k −
∑d−1

h=1 kh. At the steady state the restrictions that kd ≤ Ψd are satisfied as

long as kd is non-negative for all d. Thus, the Lagrange function reads:

max
δ,k,{kd,bd,rd}d

L =
∑
d

g(kd)− cδδ + λ

M − cBB̄ − cR∑
d

rd − τ

(∑
d

rd − R̄

)2

− wt(kd; d̂)


+
∑
d

vd,skd + +µ (Z − θE(d)− k) + ν

(
B̄ −

∑
d

bd

)
+ ς

(
−kd + χd(δ)b

α
d r

β
d

)
(5)

where λ is the lagrangian multiplier of the hospital budget constraint, vd,s is the lagrange

multiplier of the Kuhn-Tucker constraint kd,s ≥ 0, and µ is the multiplier for the condition

that ensures that the steady state inflow and outflow are equal. ν relates to the constraint

on stock of beds and ς to the treatment function constraint.

Solving the hospital’s problem gives rise to 3(d) + 5 Karush–Kuhn–Tucker (KKT) con-
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ditions. For each kh where h = 1, 2, ...q

∂L

∂kh
=
∂g(kh)

∂kh
+
∂wt(kh; d̂)

∂kh
+ vh − µ

(
θ
∂E(d)

∂kh
+ 1

)
= 0

∂L

∂rh
= −cR − τ

(∑
d

rd − R̄

)
+ ς

(
β
χhb

α
hr

β
h

rh

)
= 0

∂L

∂bh
= −ν + ς

(
α
χhb

α
hr

β
h

bh

)
= 0

∂L

∂vh
= kh ≥ 0, vh ≥ 0 and vhkh = 0

∂L

∂δ
= −cδ + δ

(∑
d

∂χd
∂δ

bαd r
β
d

)
= 0

∂L

∂λ
=

M − cBB̄ − cR∑
d

rd − τ

(∑
d

rd − R̄

)2

− wt(kd; d̂)

 ≥ 0, λ ≥ 0 and λ
∂L

∂λ
= 0

∂L

∂ν
= B̄ −

∑
d

bd ≥ 0, ν ≥ 0 and ν
∂L

∂ν
= 0

∂L

∂µ
= Z − θE(d)− k = 0

∂L

∂ς
= −kd + χdb

α
d r

β
d = 0

From this we can derive the optimal number of patients treated after having waited d

durations as a function of all the structural parameters (denoted z) of the model, ∀{d} k∗d =

k∗d(z).

B Functional and Parameter Specification - Basic benchmark Case

Table 6 shows the parameters values used in the numerical solution of the model.

C Effects of Waiting Time Targets: Full Sample

Here we show the comparison of survival curves of 1998/99 and 2005/06 for all 52 hospitals

in our sample (Figures A1 to A6). For 30 hospitals we observe asymmetric effects, for 17,

positive scale effects (shift inwards), for 4, negative scale effects (shift outwards) and for 1

hospital the survival curves remain largely unchanged.
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Table 6: Benchmark functional specifications and parameter values

g(kd) = adk
3
d + bdk

2
d + cdkd Utility from treating k patients with duration d

where ad = −0.0002 + 0.0001
d parameters of the cubic utility function

bd = 0.02− 0.01
d

cd = 2 + 5
d

α = 0.5, β = 0.1, χd(δ) = 0.1 + log((d+ 1)2) + δ Production Function Terms
cδ = 10000 High Cost Case
cδ = 500 Low Cost Case
cB = 1 Monetary cost of maintaining beds
cR = 1 Monetary cost of operating resources
τ = 0.33 Additional monetary cost of operating resources

above limit
M = 3000 Hospital’s budget
B̄ = 1000 Hospital’s beds
R̄ = 1000 Hospital’s resources
Z = 1000 Potential demand for healthcare
θ = 50 Sensitivity of inflow to expected waiting time
q=24 Maximum allowed waiting time
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D Robustness Tests

Table 7: Estimation Results - Robustness Exercises

(1) (2) (3) (4) (5) (6) (7) (8)
99-05 97-04 99-05 97-04 99-05 97-04 97-05 97-05
mortality prolonged care/ delayed discharge prolonged overly delayed

mortality care discharge

shape 0.997 1.236 1.546 2.016 1.151 1.061 1.582 1.122
(-0.02) (1.40) (8.87)*** (12.11)*** (11.74)*** (4.60)*** (8.29)*** (5.85)***

groupage 2.598 1.846 2.127 2.152 1.245 1.251 2.102 1.401
(16.72)*** (11.48)*** (40.58)*** (41.90)*** (72.16)*** (73.57)*** (38.20)*** (66.65)***

sex 0.637 0.884 1.231 1.375 1.207 1.201 1.318 1.214
(-3.45)*** (-0.95) (4.48)*** (6.95)*** (16.88)*** (16.32)*** (5.56)*** (11.58)***

imd 1.201 0.977 1.195 1.286 1.183 1.035 1.207 1.524
(2.20)** (-0.27) (6.14)*** (8.77)*** (3.10)*** (0.63) (6.11)*** (5.23)***

ortho 0.271 0.425 3.450 3.093 4.765
(-8.40)*** (-5.43)*** (21.58)*** (19.60)*** (23.44)***

ophtha — 0.016 0.064 0.123 0.085
(-4.10)*** (-12.99)***(-15.17)*** (-11.47)***

totempl 1.000 1.000 0.998 0.998 1.000 1.000 0.998 1.000
(0.90) (0.96) (-9.53)*** (-13.88)***(-7.98)*** (-2.09)** (-9.80)*** (-4.91)***

totcapinv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(-0.09) (0.47) (1.93)* (13.09)*** (9.33)*** (-12.98)***(2.85)*** (3.83)***

No. of complications (CCs):
CC1 2.089 1.635 1.448 1.857 2.003 1.630 1.930

(2.85)*** (9.17)*** (7.24)*** (51.34)*** (57.52)*** (8.94)*** (35.28)***
CC2 10.748 2.750 2.384 2.585 2.999 2.549 3.188

(9.91)*** (15.20)*** (13.11)*** (51.95)*** (57.27)*** (13.25)*** (46.69)***
CC3 33.735 5.896 4.475 3.771 5.111 3.923 5.799

(14.36)*** (19.96)*** (16.13)*** (39.24)*** (43.24)*** (12.60)*** (44.48)***
CC4 109.335 11.345 13.412 5.680 11.314 4.188 10.911

(17.40)*** (16.96)*** (17.73)*** (21.89)*** (23.38)*** (6.41)*** (29.28)***
medium 0.802 0.873 0.645 0.753 0.796 0.739

(-3.03)*** (-1.57) (-18.63)***(-11.33)***(-2.90)*** (-9.99)***
small 0.230 0.551 0.782 0.845 0.189 1.168

(-12.88)***(-5.25)*** (-8.10)*** (-5.29)*** (-13.43)***(3.90)***
teaching 0.403 0.386 0.886 1.245 0.280 0.851

(-9.40)*** (-9.05)*** (-5.45)*** (10.07)*** (-11.04)***(-4.94)***
specialist 0.274 0.486 1.257 1.523 0.254 1.484

(-9.57)*** (-5.08)*** (5.44)*** (10.29)*** (-9.70)*** (7.40)***
complaints 0.995 0.995 1.000 1.000 0.992 1.000

(-8.54)*** (-6.49)*** (3.17)*** (-0.55) (-8.03)*** (-3.04)***
(-25.24)***(-24.88)***(-44.20)***(-46.51)***(-50.99)***(-56.66)***(-42.54)***(-71.03)***

Obs. 165,118 198,938 193,442 198,976 193,986 196,410 193,203 190,065

Note: t-ratios (from robust standard errors) are in parentheses; * = 10%, ** = 5%, and *** = 1% levels of
significance. Columns (3), (4), (7), (8) use beds instead of total employment as a measure of hospital’s size.
Columns (1)-(4) and (7) use the health and disability domain of the imd; the rest use the income domain.

In columns (1), (3), (5) we assess patient outcomes in 2005 (as in Table 4) using however

hospital classification based on the 1999-2005 comparison of survival curves at short dura-

tions. Columns (2), (4), (6) perform the same exercise for outcomes in 2004. In the last

two columns we display results for the two additional patients’ outcomes, namely prolonged

care and overly delayed discharge. Results are in line with the ones obtained in Table 4.
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